Skip to main content
Log in

Hamiltonian Operators with Zero-Divergence Constraints

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using previously proposed techniques, we derive the defining system for a differential algebra associated with zero-divergence constraints. We study this system and present a simple class of its solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Olver, Applications of Lie groups to differential equations (Grad. Texts Math., Vol. 107), Springer, New York (1986).

    Book  MATH  Google Scholar 

  2. V. V. Zharinov, “Lie-Poisson structures over differential algebras,” Theor. Math. Phys., 192, 1337–1349 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Zharinov, “Hamiltonian operators in differential algebras,” Theor. Math. Phys., 193, 1725–1736 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. V. Zharinov, “Evolution systems with constraints in the form of zero-divergence conditions,” Theor. Math. Phys., 163, 401–413 (2010).

    Article  MATH  Google Scholar 

  5. V. V. Kozlov, “Linear Hamiltonian systems: Quadratic integrals, singular subspaces, and stability,” Regul. Chaotic Dyn., 23, 26–46 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V. V. Kozlov and O. G. Smolyanov, “Hamiltonian approach to secondary quantization,” Dokl. Math., 98, 571–574 (2018).

    Article  MATH  Google Scholar 

  7. A. A. Slavnov, “60 years of nonabelian gauge fields,” in: Particle Physics at the Year of Light (Proc. Seventeenth Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 20–26 August 2015, A. I. Studenikin, ed.), World Scientific, Singapore (2017), pp. 435–442.

    Chapter  Google Scholar 

  8. A. A. Slavnov, “A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory,” Theor. Math. Phys., 193, 1826–1833 (2017).

    Article  MATH  Google Scholar 

  9. A. A. Slavnov, “Quantization of non-Abelian gauge fields,” Proc. Steklov Inst. Math., 289, 286–290 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Ch. Kulaev, A. K. Pogrebkov, and A. B. Shabat, “Darboux system: Liouville reduction and an explicit solution,” Proc. Steklov Inst. Math., 302, 250–269 (2018).

    Article  MathSciNet  Google Scholar 

  11. I. Ya. Aref’eva and I. V. Volovich, “Notes on the SYK model in real time,” Theor. Math. Phys., 197, 1650–1662 (2018).

    Article  MATH  Google Scholar 

  12. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya, and I. Volovich, “On replica-nondiagonal large N saddles in the SYK model,” EPJ Web Conf., 191, 06007 (2018).

    Article  Google Scholar 

  13. M. O. Katanaev, “Chern-Simons action and disclinations,” Proc. Steklov Inst. Math., 301, 114–133 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. G. Sergeev, “String theory and quasiconformal maps,” Lobachevskii J. Math., 38, 352–363 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zharinov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 1, pp. 3–18, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharinov, V.V. Hamiltonian Operators with Zero-Divergence Constraints. Theor Math Phys 200, 923–937 (2019). https://doi.org/10.1134/S0040577919070018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919070018

Keywords

Navigation