Skip to main content
Log in

Note on Schramm-Loewner Evolution for Superconformal Algebras

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the group-theoretical formulation of Schramm-Loewner evolution (SLE), we propose variants of SLE related to superconformal algebras. The corresponding stochastic differential equation is derived from a random process on an infinite-dimensional Lie group. We consider random processes on a certain kind of groups of superconformal transformations generated by exponentiated elements of the Grassmann envelop of the superconformal algebras. We present a method for obtaining local martingales from a representation of the superconformal algebra after integration over the Grassmann variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Schramm, “Scaling limits of loop-erased random walks and uniform spanning trees,” Israel J. Math., 118, 221–288 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Belavin, A. M Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B, 241, 333–380 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. Bauer and D. Bernard, “Conformal field theories of stochastic Loewner evolutions,” Commun. Math. Phys., 239, 493–521 (2003); arXiv:hep-th/0210015v3 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Friedrich and J. Kalkkinen, “On conformal field theory and stochastic Loewner evolution,” Nucl. Phys. B, 687, 279–302 (2004); arXiv:hep-th/0308020v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Kontsevich, “CFT, SLE, and phase boundaries,” Preprint, Max-Planck-Institüt (Arbeitstagung 2003), 2003-60a, http://www.mpim-bonn.mpg.de/preprints/send?bid=2213 (2003).

    Google Scholar 

  6. M. L. Kontsevic and Yu. M. Sukhov, “On Malliavin Measures, SLE, and CFT,” Proc. Steklov Inst. Math., 258, 100–146 (2007).

    Article  MathSciNet  Google Scholar 

  7. J. Dubédat, “SLE and Virasoro representations: Localization,” Commun. Math. Phys., 336, 695–760 (2015); “SLE and Virasoro representations: Fusion,” Commun. Math. Phys., 336, 761–809 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Bauer, D. Bernard, and K. Kytölä, “Multiple Schramm-Loewner evolutions and statistical mechanics martingales,” J. Stat. Phys., 120, 1125–1163 (2005); arXiv:math-ph/0503024v2 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Bettelheim, I. A. Gruzberg, A. W. W. Ludwig, and P. Wiegmann, “Stochastic Loewner evolution for conformal field theories with Lie group symmetries,” Phys. Rev. Lett., 95, 251601 (2005); arXiv:hep-th/0503013v3 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Alekseev, A. Bytsko, and K. Izyurov, “On SLE martingales in boundary WZW models,” Lett. Math. Phys., 97, 243–261 (2011); arXiv:1012.3113v2 [math-ph] (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Koshida, “Schramm-Loewner-evolution-type growth processes corresponding to Wess-Zumino-Witten theories,” Lett. Math. Phys. (to appear); arXiv:1710.03835v3 [math-ph] (2017); “Local martingales associated with SLE with internal symmetry,” J. Math. Phys., 59, 101703 (2018); arXiv:1803.06808v3 [math-ph] (2018).

  12. S. Koshida, “Schramm-Loewner evolution with Lie superalgebra symmetry,” Internat. J. Modern Phys. A, 33, 1850117 (2018); arXiv:1803.09579v2 [math-ph] (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J. Rasmussen, “Stochastic evolutions in superspace and superconformal field theory,” Lett. Math. Phys., 68, 41–52 (2004); arXiv:math-ph/0312010v1 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. Nagi and J. Rasmussen, “On stochastic evolutions and superconformal field theory,” Nucl. Phys. B, 704, 475–489 (2005); arXiv:math-ph/0407049v1 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves (Math. Surv. Monogr., Vol. 88), Vol. 88, Amer. Math. Soc., Providence, R. I. (2004).

    Book  MATH  Google Scholar 

  16. K. Barron, “A supergeometric interpretation of vertex operator superalgebras,” Internat. Math. Res. Notices, 1996, 409–430 (1996); The Moduli Space of N=1 Superspheres with Tubes and the Sewing Operation (Memoirs Amer. Math. Soc., Vol. 162, No. 772), Amer. Math. Soc., Providence, R. I. (2003); “The moduli space of n=2 super-Riemann spheres with tubes,” Commun. Contemp. Math., 9, 857–940 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Dörrzapf, “Singular vectors of the n=2 superconformal algebra,” Internat. J. Modern Phys. A, 10, 2143–2180 (1995); arXiv:hep-th/9403124v2 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Koshida.

Additional information

This research was supported by a Grant-in-Aid for JSPS Fellows (Grant No. 17J09658).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshida, S. Note on Schramm-Loewner Evolution for Superconformal Algebras. Theor Math Phys 199, 501–512 (2019). https://doi.org/10.1134/S0040577919040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919040020

Keywords

Navigation