Skip to main content
Log in

Cluster Toda Chains and Nekrasov Functions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend the relation between cluster integrable systems and q-difference equations beyond the Painlev´e case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern–Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bershtein, P. Gavrylenko, and A. Marshakov, “Cluster integrable systems, q–Painlevé equations, and their quantization,” JHEP, 1802, 077 (2018); arXiv:1711.02063v3 [math–ph] (2017).

    Article  ADS  MATH  Google Scholar 

  2. A. B. Goncharov and R. Kenyon, “Dimers and cluster integrable systems,” Ann. Sci. École Norm. Supér., 46, 747–813 (2013); arXiv:1107.5588v2 [math.AG] (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Fock and A. Marshakov, “Loop groups, clusters, dimers, and integrable systems,” in: Geometry and Quantization of Moduli Spaces (L. Álvarez Ćonsul, J. E. Andersen, and I. Mundet i Riera, eds.), Springer, Cham (2016), pp. 1–65; arXiv:1401.1606v1 [math.AG] (2014).

    Chapter  Google Scholar 

  4. O. Gamayun, N. Iorgov, and O. Lisovyy, “Conformal field theory of Painlevé VI,” JHEP, 1210, 38 (2012); arXiv:1207.0787v3 [hep–th] (2012).

    Article  ADS  MATH  Google Scholar 

  5. P. Gavrylenko, “Isomonodromic τ–functions and WN conformal blocks,” JHEP, 1509, 167 (2015); arXiv: 1505.00259v3 [hep–th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations,” Commun. Math. Phys., 220, 165–229 (2001).

    Article  ADS  MATH  Google Scholar 

  7. S. Franco, A. Hanany, D. Vegh, B. Wecht, and K. D. Kennaway, “Brane dimers and quiver gauge theories,” JHEP, 0601, 096 (2006); arXiv:hep–th/0504110v2 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, “Gauge theories from toric geometry and brane tilings,” JHEP, 0601, 128 (2006); arXiv:hep–th/0505211v3 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Brini and A. Tanzini, “Exact results for topological strings on resolved Y p,q singularities,” Commun. Math. Phys., 289, 205–252 (2009); arXiv:0804.2598v4 [hep–th] (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. R. Eager, S. Franco, and K. Schaeffer, “Dimer models and integrable systems,” JHEP, 1206, 106 (2012); arXiv:1107.1244v2 [hep–th] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Marshakov, “Lie groups, cluster variables, and integrable systems,” J. Geom. Phys., 67, 16–36 (2013); arXiv:1207.1869v1 [hep–th] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Iqbal and A. K. Kashani–Poor, “Instanton counting and Chern–Simons theory,” Adv. Theor. Math. Phys., 7, 457–497 (2003); arXiv:hep–th/0212279v4 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Eguchi and H. Kanno, “Topological strings and Nekrasov’s formulas,” JHEP, 0312, 006 (2003); arXiv:hepth/0310235v3 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Tachikawa, “Five–dimensional Chern–Simons terms and Nekrasov’s instanton counting,” JHEP, 0402, 050 (2004); arXiv:hep–th/0401184v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Göttshe, H. Nakajima, and K. Yoshioka, “K–theoretic Donaldson invariants via instanton counting,” Pure Appl. Math. Quart., 5, 1029–1111 (2009); arXiv:math/0611945v1 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Takhtajan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. Takhtajan, Springer, Berlin (2007).

    Google Scholar 

  17. M. Gekhtman, M. Shapiro, and A. Vainshtein, “Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective,” Acta Math., 206, 245–310 (2011); arXiv:0906.1364v4 [math.QA] (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Finkelberg and A. Tsymbaliuk, “Multiplicative slices, relativistic Toda and shifted quantum affine algebras,” arXiv:1708.01795v5 [math.RT] (2017).

    Google Scholar 

  19. R. Gonin and A. Tsymbaliuk, “On Sevostyanov’s construction of quantum difference Toda lattices for classical groups,” arXiv:1804.01063v2 [math.RT] (2018).

    Google Scholar 

  20. P. Di Francesco, “Quantum Ar Q–system solutions as q–multinomial series,” Electron. J. Comb., 18, 176 (2011); arXiv:1104.0339v1 [math–ph] (2011).

    Google Scholar 

  21. A. V. Zabrodin, “A survey of Hirota’s difference equations,” Theor. Math. Phys., 113, 1347–1392 (1997); arXiv: solv–int/9704001v1 (1997).

    Article  Google Scholar 

  22. S. Fomin and A. Zelevinsky, “Cluster algebras IV: Coefficients,” Compos. Math., 143, 112–164 (2007); arXiv: math/0602259v3 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. L. Kontsevich, “Uniform distributions [in Russian],” Kvant, No. 7, 51–52 (1985).

    Google Scholar 

  24. R. Inoue, T. Lam, and P. Pylyavskyy, “Toric networks, geometric R–matrices, and generalized discrete Toda lattices,” Commun. Math. Phys., 347, 799–855 (2016); arXiv:1504.03448v3 [math.AG] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. A. Bershtein and A. I. Shchechkin, “q–Deformed Painlevé τ function and q–deformed conformal blocks,” J. Phys. A: Math. Theor., 50, 085202 (2017); arXiv:1608.02566v4 [math–ph] (2016).

    Article  ADS  MATH  Google Scholar 

  26. G. Felder and M. Müller–Lennert, “Analyticity of Nekrasov partition functions,” Commun. Math. Phys., 364, 683–718 (2018); arXiv:1709.05232v3 [math–ph] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. H. Nakajima and K. Yoshioka, “Perverse coherent sheaves on blow–up III: Blow–up formula from wall–crossing,” Kyoto J. Math., 51, 263–335 (2011); arXiv:0911.1773v3 [math.AG] (2009).

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Maeda, T. Nakatsu, K. Takasaki, and T. Tamakoshi, “Five–dimensional supersymmetric Yang–Mills theories and random plane partitions,” JHEP, 0503, 056 (2005); arXiv:hep–th/0412327v3 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Takasaki, “Integrable structure of melting crystal model with two q–parameters,” J. Geom. Phys., 59, 1244–1257 (2009); arXiv:0903.2607v2 [math–ph] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. H. Sakai, “Problem: Discrete Painlevé equations and their Lax forms,” in: Algebraic, Analytic, and Geometric Aspects of Complex Differential Equations and Their Deformations: Painlevé Hierarchies (RIMS Kôkyûroku Bessatsu, Vol. B2, Y. Takei, ed.), Res. Inst. Math. Sci., Kyoto (2007), pp. 195–208.

    Google Scholar 

  31. N. A. Nekrasov and A. Okounkov, “Seiberg–Witten theory and random partitions,” in: The Unity of Mathematics (Progr. Math., Vol. 244, P. Etingof, V. Retakh, and I. M. Singer, eds.), Birkhäuser, Boston (2006), pp. 525–596; arXiv:hep–th/0306238v2 (2003).

    Google Scholar 

  32. G. Bonnet, F. David, and B. Eynard, “Breakdown of universality in multi–cut matrix models,” J. Phys. A: Math. Gen., 33, 6739–6768 (2000); arXiv:cond–mat/0003324v2 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Scientific, Singapore (1999).

    Book  MATH  Google Scholar 

  34. V. V. Fock, “Inverse spectral problem for GK integrable system,” arXiv:1503.00289v1 [math.AG] (2015).

    Google Scholar 

  35. J. D. Fay, Theta Functions on Riemann Surfaces (Lect. Notes Math., Vol. 352), Springer, Berlin (1973).

    Book  MATH  Google Scholar 

  36. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1927).

    MATH  Google Scholar 

  37. O. Gamayun, N. Iorgov, and O. Lisovyy, “How instanton combinatorics solves Painlevé VI, V, and III’s,” J. Phys. A: Math. Theor., 46, 335203 (2013); arXiv:1302.1832v2 [hep–th] (2013).

    Article  MATH  Google Scholar 

  38. M. A. Bershtein and A. I. Shchechkin, “Bäcklund transformation of Painlevé III(D8) τ function,” J. Phys. A: Math. Theor., 50, 115205 (2017); arXiv:1608.02568v2 [math–ph] (2016).

    Article  ADS  MATH  Google Scholar 

  39. P. Gavrylenko and A. Marshakov, “Exact conformal blocks for the W–algebras, twist fields, and isomonodromic deformations,” JHEP, 1602, 181 (2016); arXiv:1507.08794v2 [hep–th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. G. Bonelli, A. Grassi, and A. Tanzini, “New results in N=2 theories from non–perturbative string,” Ann. Inst. H. Poincaré, 19, 743–774 (2018); arXiv:1704.01517v3 [hep–th] (2017).

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Bonelli, A. Grassi, and A. Tanzini, “Quantum curves and q–deformed Painlevé equations,” arXiv:1710.11603v2 [hep–th] (2017).

    Google Scholar 

  42. Y. Hatsuda and M. Mari˜no, “Exact quantization conditions for the relativistic Toda lattice,” JHEP, 1605, 133 (2016); arXiv:1511.02860v3 [hep–th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S. Franco, Y. Hatsuda, and M. Mari˜no, “Exact quantization conditions for cluster integrable systems,” J. Stat. Mech., 2016, 063107 (2016); arXiv:1512.03061v2 [hep–th] (2015).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bershtein.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 2, pp. 179–214, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bershtein, M.A., Gavrylenko, P.G. & Marshakov, A.V. Cluster Toda Chains and Nekrasov Functions. Theor Math Phys 198, 157–188 (2019). https://doi.org/10.1134/S0040577919020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919020016

Keywords

Navigation