Theoretical and Mathematical Physics

, Volume 198, Issue 1, pp 145–155 | Cite as

Construction of the Gelfand–Tsetlin Basis for Unitary Principal Series Representations of the Algebra sln(ℂ)

  • P. A. ValinevichEmail author


We consider infinite-dimensional unitary principal series representations of the algebra sln(), implemented on the space of functions of n(n−1)/2 complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra n. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.


Gelfand–Tsetlin basis intertwining operator unitary principal series representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Gel’fand and M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices [in Russian],” Dokl. Akad. Nauk SSSR, n.s., 71, 825–828 (1950).zbMATHGoogle Scholar
  2. 2.
    A. O. Barut and R. R¸aczka, Theory of Group Representations and Applications, World Scientific, Singapore (1986).CrossRefGoogle Scholar
  3. 3.
    L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Application (Encycl. Math. Its Appl., Vol. 87), Addison-Wesley, Reading, Mass. (1981).zbMATHGoogle Scholar
  4. 4.
    A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras,” in: Handbook of Algebra (M. Hazewinkel, ed.), Vol. 4, Elsevier, Amsterdam (2006), pp. 109–170.Google Scholar
  5. 5.
    I. M. Gel’fand and M. A. Naimark, Unitary Representations of the Classical Groups (Trudy Mat. Inst. Steklov., Vol. 36), Acad. Sci. USSR, Moscow (1950).Google Scholar
  6. 6.
    M. I. Graev, “A continuous analogue of Gelfand–Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group GL(n, C) in the space of functions on the variety of these schemes,” Dokl. Math., 75, 31–35 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. I. Graev, “Infinite-dimensional representations of the Lie algebra gl(n,C) related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group GL(n, C),” Acta Appl. Math., 81, 193–120 (2004).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yu. A. Neretin, “Restriction of representations of GL(n+1,C) to GL(n, C) and action of the Lie overalgebra,” Algebr. Represent. Theory, 21, 1087–1117 (2018); arXiv:1510.03611v2 [math.RT] (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Nazarov and V. O. Tarasov, “Yangians and Gelfand–Zetlin bases,” Publ. Res. Inst. Math. Sci., 30, 459–478 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. E. Derkachev and A. N. Manashov, “General solution of the Yang–Baxter equation with symmetry group SL(n,C),” St. Petersburg Math. J., 21, 513–577 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. A. Valinevich, S. È. Derkachev, P. P. Kulish, and E. M. Uvarov, “Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an SL(n, C)-invariant spin chain,” Theor. Math. Phys., 189, 1529–1553 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    I. M. Gel’fand and M. I. Graev, “Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them,” Izv. Akad. Nauk SSSR Ser. Mat., 29, 1329–1356 (1965).MathSciNetGoogle Scholar
  13. 13.
    M. Nazarov and V. O. Tarasov, “Representations of Yangians with Gelfand–Zetlin bases,” J. Reine Angew. Math., 496, 181–212 (1998).MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Molev, Yangians and Classical Lie Algebras [in Russian], MTsNMO, Moscow (2009); English transl. prev. ed. (Math. Surv. Monogr., Vol. 143), Amer. Math. Soc., Providence, R. I. (2007).zbMATHGoogle Scholar
  15. 15.
    V. K. Dobrev and P. Truini, “Polynomal realization of Uq(sl(3)) Gel’fand–(Weyl)–Zetlin basis,” J. Math. Phys., 38, 3750–3767 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. K. Dobrev, A. D. Mitov, and P. Truini, “Normalized Uq(sl(3)) Gel’fand–(Weyl)–Zetlin basis and new summation formulas for q-hypergeometric functions,” J. Math. Phys., 41, 7752–7768 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations