# Construction of the Gelfand–Tsetlin Basis for Unitary Principal Series Representations of the Algebra *sl*_{n}(ℂ)

- 12 Downloads

## Abstract

We consider infinite-dimensional unitary principal series representations of the algebra *sl*_{n}(*ℂ*), implemented on the space of functions of n(n−*1*)/*2* complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra n. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.

## Keywords

Gelfand–Tsetlin basis intertwining operator unitary principal series representation## Preview

Unable to display preview. Download preview PDF.

## References

- 1.I. M. Gel’fand and M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices [in Russian],”
*Dokl. Akad. Nauk SSSR, n.s.*,**71**, 825–828 (1950).zbMATHGoogle Scholar - 2.A. O. Barut and R. R¸aczka,
*Theory of Group Representations and Applications*, World Scientific, Singapore (1986).CrossRefGoogle Scholar - 3.L. C. Biedenharn and J. D. Louck,
*Angular Momentum in Quantum Physics: Theory and Application*(Encycl. Math. Its Appl., Vol. 87), Addison-Wesley, Reading, Mass. (1981).zbMATHGoogle Scholar - 4.A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras,”
*in: Handbook of Algebra (M. Hazewinkel, ed.)*, Vol. 4, Elsevier, Amsterdam (2006), pp. 109–170.Google Scholar - 5.I. M. Gel’fand and M. A. Naimark,
*Unitary Representations of the Classical Groups*(Trudy Mat. Inst. Steklov., Vol. 36), Acad. Sci. USSR, Moscow (1950).Google Scholar - 6.M. I. Graev, “A continuous analogue of Gelfand–Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group GL(n, C) in the space of functions on the variety of these schemes,”
*Dokl. Math.*,**75**, 31–35 (2007).MathSciNetCrossRefzbMATHGoogle Scholar - 7.M. I. Graev, “Infinite-dimensional representations of the Lie algebra gl(n,C) related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group GL(n, C),”
*Acta Appl. Math.*,**81**, 193–120 (2004).MathSciNetCrossRefGoogle Scholar - 8.Yu. A. Neretin, “Restriction of representations of GL(n+1,C) to GL(n, C) and action of the Lie overalgebra,”
*Algebr. Represent. Theory*,**21**, 1087–1117 (2018); arXiv:1510.03611v2 [math.RT] (2015).MathSciNetCrossRefzbMATHGoogle Scholar - 9.M. Nazarov and V. O. Tarasov, “Yangians and Gelfand–Zetlin bases,”
*Publ. Res. Inst. Math. Sci.*,**30**, 459–478 (1994).MathSciNetCrossRefzbMATHGoogle Scholar - 10.S. E. Derkachev and A. N. Manashov, “General solution of the Yang–Baxter equation with symmetry group SL(n,C),”
*St. Petersburg Math. J.*,**21**, 513–577 (2010).MathSciNetCrossRefzbMATHGoogle Scholar - 11.P. A. Valinevich, S. È. Derkachev, P. P. Kulish, and E. M. Uvarov, “Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an SL(n, C)-invariant spin chain,”
*Theor. Math. Phys.*,**189**, 1529–1553 (2016).MathSciNetCrossRefzbMATHGoogle Scholar - 12.I. M. Gel’fand and M. I. Graev, “Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them,”
*Izv. Akad. Nauk SSSR Ser. Mat.*,**29**, 1329–1356 (1965).MathSciNetGoogle Scholar - 13.M. Nazarov and V. O. Tarasov, “Representations of Yangians with Gelfand–Zetlin bases,”
*J. Reine Angew. Math.*,**496**, 181–212 (1998).MathSciNetzbMATHGoogle Scholar - 14.A. Molev,
*Yangians and Classical Lie Algebras [in Russian]*, MTsNMO, Moscow (2009); English transl. prev. ed. (Math. Surv. Monogr., Vol. 143), Amer. Math. Soc., Providence, R. I. (2007).zbMATHGoogle Scholar - 15.V. K. Dobrev and P. Truini, “Polynomal realization of Uq(sl(3)) Gel’fand–(Weyl)–Zetlin basis,”
*J. Math. Phys.*,**38**, 3750–3767 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar - 16.V. K. Dobrev, A. D. Mitov, and P. Truini, “Normalized Uq(sl(3)) Gel’fand–(Weyl)–Zetlin basis and new summation formulas for q-hypergeometric functions,”
*J. Math. Phys.*,**41**, 7752–7768 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar