Theoretical and Mathematical Physics

, Volume 198, Issue 1, pp 1–16 | Cite as

Nested Bethe Ansatz for the RTT Algebra of sp(4) Type

  • Č. BurdíkEmail author
  • O. Navrátil


We show how to formulate the algebraic nested Bethe ansatz for RTT algebras with an R-matrix of the sp(4) type. We obtain the Bethe vectors and Bethe conditions for any highest-weight representation of these RTT algebras.


RTT algebra nested Bethe ansatz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method: I,” Theor. Math. Phys., 40, 688–706 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. P. Kulish and N. Yu. Reshetikhin, “Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model),” J. Phys. A: Math. Gen., 16, L591–L596 (1983).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Belliard and E. Ragoucy, “Nested Bethe ansatz for ‘all’ closed spin chain,” J. Phys. A: Math. Theor., 41, 295202 (2008); arXiv:0804.2822v2 [math-ph] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry,” Theor. Math. Phys., 63, 555–569 (1985).CrossRefGoogle Scholar
  5. 5.
    N. Yu. Reshetikhin, “Bethe-ansats for SO(N)-invariant transfermatrices,” Zap. Nauchn. Sem. LOMI, 169, 122–140 (1988).Google Scholar
  6. 6.
    M. J. Martins and P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models,” Nucl. Phys. B, 500, 579–620 (1997); arXiv:hep-th/9703023v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of sp(4) type,” arXiv:1708.05633v1 [math-ph] (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Czech Technical University in PraguePragueCzech Republic

Personalised recommendations