Skip to main content
Log in

Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with p-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear p-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all p ≠ 0, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers p ≠ 0. We use Noether’s theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers p > 0 and discuss some of their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz and H. Segur, “On the evolution of packets of water waves,” J. Fluid Mech., 92, 691–715 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. B. B. Kadomstev and V. I. Petviashvili, “On the stability of waves in weakly dispersive media,” Sov. Phys. Dokl., 15, 539–541 (1970).

    ADS  Google Scholar 

  3. V. Veerakumar and M. Daniel, “Modified Kadomtsev–Petviashvili (MKP) equation and electromagnetic soliton,” Math. Comput. Simulation, 62, 163–169 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Satsuma, “N-soliton solution of the two-dimensional Korteweg–deVries equation,” J. Phys. Soc. Japan, 40, 286–290 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. Satsuma and M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems,” J. Math. Phys., 20, 1496–1503 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction,” Phys. Lett. A, 63, 205–206 (1977).

    Article  ADS  Google Scholar 

  7. F. Gesztesy, H. Holden, E. Saab, and B. Simon, “Explicit construction of solutions of the modified Kadomtsev–Petviashvili equation,” J. Funct. Anal., 98, 211–228 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. G. Konopel’chenko and V. G. Dubrovsky, “Inverse spectral transform for the modified Kadomtsev–Petviashvili equation,” Stud. Appl. Math., 86, 219–268 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Tao, “Why are solitons stable?” Bull. Amer. Math. Soc., n.s., 46, 1–33 (2009).

    MathSciNet  MATH  Google Scholar 

  10. L. V. Bogdanov and V. E. Zakharov, “The Boussinesq equation revisited,” Phys. D, 165, 137–162 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. E. Falkovich, M. D. Spector, and S. K. Turitsyn, “Destruction of stationary solutions and collapse in the nonlinear string equation,” Phys. Lett. A, 99, 271–274 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Naz, Z. Ali, and I. Naeem, “Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem,” Abstr. Appl. Anal., 2013, 340564 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Rui, P. Zhao, and Y. Zhang, “Invariant solutions and conservation laws of the (2+1)-dimensional Boussinesq equation,” Abstr. Appl. Anal., 2014, 840405 (2014).

    MathSciNet  Google Scholar 

  14. A. R. Adem, C. M. Khalique, and A. Biswas, “Solutions of Kadomtsev–Petviashvili equation with power law nonlinearity in 1+3 dimensions,” Math. Meth. Appl. Sci., 34, 532–543 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1993).

    Book  MATH  Google Scholar 

  16. G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations (Appl. Math. Sci., Vol. 168), Springer, New York (2010).

  17. S. C. Anco and G. Bluman, “Direct construction method for conservation laws of partial differential equations: Part II. General treatment,” Eur. J. Appl. Math., 13, 567–585 (2002).

    MATH  Google Scholar 

  18. L. A. Dickey, “On Hamiltonian and Lagrangian formalisms for the KP-hierarchy of integrable equations,” Ann. Acad. Sci. (N. Y.), 491, 131–148 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. C. Anco, E. Recio, M. Gandarias, and M. Bruzón, “A nonlinear generalization of the Camassa–Holm equation with peakon solutions,” in: Dynamical Systems, Differential Equations, and Applications (Proc. 10th AIMS Conf., M. de Leon, W. Feng, Z. Feng, J. Lopez-Gomez, X. Lu, J. M. Martell, J. Parcet, D. Peralta-Salas, and W. Ruan, eds.), AIMS, Madrid, Spain (2015), pp. 29–37.

    Google Scholar 

  20. S. Y. Lou, “Symmetries of the Kadomtsev–Petviashvili equation,” J. Phys. A: Math. Gen., 26, 4387–4394 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. C. Anco, “Generalization of Noether’s theorem in modern form to non-variational partial differential equations,” in: Recent Progress and Modern Challenges in Applied Mathematics, Modeling, and Computational Science (Fields Inst. Commun., Vol. 79), Springer, New York (2017), pp. 119–182.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Wolf, “A comparison of four approaches to the calculation of conservation laws,” Eur. J. Appl. Math., 13, 129–152 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. C. Anco and A. Kara, “Symmetry-invariant conservation laws of partial differential equations,” Eur. J. Appl. Math., 29, 78–117 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. I. S. O’Keir and E. J. Parkes, “The derivation of a modified Kadomtsev–Petviashvili equation and the stability of its solutions,” Phys. Scr., 55, 135–142 (1997).

    Article  ADS  Google Scholar 

  25. M. Matsukawa, S. Watanaba, and H. Tanaca, “Soliton solutions of generalized 2D Boussinesq equation with quadratic and cubic nonlinearity,” J. Phys. Soc. Japan, 58, 827–830 (1989).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Gandarias.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 197, No. 1, pp. 3–23, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anco, S.C., Gandarias, M.L. & Recio, E. Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions. Theor Math Phys 197, 1393–1411 (2018). https://doi.org/10.1134/S004057791810001X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791810001X

Keywords

Navigation