Skip to main content
Log in

Integrable Nonautonomous Liénard-Type Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a family of nonautonomous generalized Liénard-type equations. We consider the equivalence problem via the generalized Sundman transformations between this family of equations and type-I Painlevé–Gambier equations. As a result, we find four criteria of equivalence, which give four integrable families of Liénard-type equations. We demonstrate that these criteria can be used to construct general traveling-wave and stationary solutions of certain classes of diffusion–convection equations. We also illustrate our results with several other examples of integrable nonautonomous Liénard-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liénard, “Étude des oscillations entretenues,” Rev. Gen. Elec., 23, 901–912 (1928).

    Google Scholar 

  2. A. K. Tiwari, S. N. Pandey, M. Senthilvelan, and M. Lakshmanan, “Classification of Lie point symmetries for quadratic Liénard type equation x + f(x) ˙ x2 + g(x) = 0,” J. Math. Phys., 54, 053506 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations [in Russian], Nauka, Moscow (1981); English transl.: Theory of Oscillators, Dover, New York (1987).

    MATH  Google Scholar 

  4. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC, Boca Raton, Fla. (2002).

    Book  MATH  Google Scholar 

  5. L. G. S. Duarte, S. E. S. Duarte, L. A. C. P. da Mota, and J. E. F. Skea, “Solving second–order ordinary differential equations by extending the Prelle–Singer method,” J. Phys. A.: Math. Gen., 34, 3015–3024 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. C. Nucci and P. G. L. Leach, “An old method of Jacobi to find Lagrangians,” J. Nonlinear Math. Phys., 16, 431–441 (2009); arXiv:0807.2796v1 [nlin.SI] (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. G. D’Ambrosi and M. C. Nucci, “Lagrangians for equations of Painlevé type by means of the Jacobi last multiplier,” J. Nonlinear Math. Phys., 16, Suppl. 1, 61–71 (2009).

    Article  MATH  Google Scholar 

  8. M. C. Nucci, “Seeking (and finding) Lagrangians,” Theor. Math. Phys., 160, 1014–1021 (2009).

    Article  MATH  Google Scholar 

  9. M. C. Nucci and K. M. Tamizhmani, “Lagrangians for dissipative nonlinear oscillators: The method of Jacobi last multiplier,” J. Nonlinear Math. Phys., 17, 167–178 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. N. Pandey, P. S. Bindu, M. Senthilvelan, and M. Lakshmanan, “A group theoretical identification of integrable cases of the Liénard–type equation ¨x + f(x) ˙ x + g(x) = 0: I. Equations having nonmaximal number of Lie point symmetries,” J. Math. Phys., 50, 082702 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. N. Pandey, P. S. Bindu, M. Senthilvelan, and M. Lakshmanan, “A group theoretical identification of integrable equations in the Liénard–type equation ¨x+f(x) ˙ x+g(x) = 0: II. Equations having maximal Lie point symmetries,” J. Math. Phys., 50, 102701 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L. G. S. Duarte, I. C. Moreira, and F. C. Santos, “Linearization under nonpoint transformations,” J. Phys. A.: Math. Gen., 27, L739–L743 (1994).

    Article  ADS  MATH  Google Scholar 

  13. W. Nakpim and S. V. Meleshko, “Linearization of second–order ordinary differential equations by generalized Sundman transformations,” SIGMA, 6, 051 (2010).

    MathSciNet  MATH  Google Scholar 

  14. S. Moyo and S. V. Meleshko, “Application of the generalised Sundman transformation to the linearisation of two second–order ordinary differential equations,” J. Nonlinear Math. Phys., 18, Suppl. 1, 213–236 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Euler and M. Euler, “Sundman symmetries of nonlinear second–order and third–order ordinary differential equations,” J. Nonlinear Math. Phys., 11, 399–421 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N. Euler and M. Euler, “An alternate view on symmetries of second–order linearisable ordinary differential equations,” Lobachevskii J. Math., 33, 191–194 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. A. Kudryashov and D. I. Sinelshchikov, “On the criteria for integrability of the Liénard equation,” Appl. Math. Lett., 57, 114–120 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. A. Kudryashov and D. I. Sinelshchikov, “On the integrability conditions for a family of Liénard–type equations,” Regul. Chaotic Dyn., 21, 548–555 (2016); arXiv:1608.06920v1 [nlin.SI] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N. A. Kudryashov and D. I. Sinelshchikov, “On connections of the Liénard equation with some equations of Painlevé–Gambier type,” J. Math. Anal. Appl., 449, 1570–1580 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. I. Sinelshchikov, “On connections of the Liénard–type equations with type II Painlevé–Gambier equations,” AIP Conf. Proc., 1863, 380008 (2017).

    Article  Google Scholar 

  21. E. L. Ince, Ordinary Differential Equations, Longmans, Green, and Co., London (1927).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Sinelshchikov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 2, pp. 328–340, August, 2018.

This research is supported by a grant from the Russian Science Foundation (Project No. 17-71-10241).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinelshchikov, D.I., Kudryashov, N.A. Integrable Nonautonomous Liénard-Type Equations. Theor Math Phys 196, 1230–1240 (2018). https://doi.org/10.1134/S0040577918080093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918080093

Keywords

Navigation