Skip to main content
Log in

Gaussian Packets and Beams with Focal Points in Vector Problems of Plasma Physics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a linearized equation describing plasma motion in a toroidal domain (tokamak) and study the asymptotic forms of steady-state solutions of the Gaussian beam type with a short wave length, which correspond to electric modes. We also study Gaussian wave packets and localized “cigar”-type beams describing the transmission of localized perturbations through the tokamak chamber. We separately consider the case of focal points on a trajectory and the asymptotic forms in a neighborhood of a focal point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer, New York (2015)

    Google Scholar 

  2. J. A. Bittencourt, Fundamentals of Plasma Physics, Springer, New York (2004)

    Book  MATH  Google Scholar 

  3. J. P. Freidberg, Plasma Physics and Fusion Energy, Cambridge Univ. Press, New York (2007).

    Book  Google Scholar 

  4. R. A. Gerwin, “Initial value solution of Maxwell’s equations in cold plasma,” Amer. J. Phys., 30, 711–715 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. S. Nowak and A. Orefice, “Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas,” Phys. Plasmas, 1, 1242–1250 (1994)

    Article  ADS  Google Scholar 

  6. E. Mazzucato, “Propagation of a Gaussian beam in a nonhomogeneous plasma,” Phys. Fluid B, 1, 1855 (1989); Erratum, 2, 228 (1990)

    Article  ADS  Google Scholar 

  7. J. P. Freidberg, Ideal Magnetohydrodynamics, Cambridge Univ. Press, Cambridge (2014)

    Google Scholar 

  8. G. V. Pereverzev, “Paraxial WKB description of short wavelength eigenmodes in a tokamak,” Phys. Plasmas, 8, 3664–3672 (2001)

    Article  ADS  Google Scholar 

  9. Ya. A. Kravtsov and P. B. Erczynski, “Gaussian beams in inhomogeneous media: A review,” Stud. Geophys. Geod., 51, 1–36 (2007)

    Article  ADS  Google Scholar 

  10. R. A. Cairns and V. Fuchs, “Calculation of a wave field from ray tracing,” Nucl. Fusion, 50, 095001 (2010).

    Article  ADS  Google Scholar 

  11. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation for Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976); English transl,: Semi-Classical Approximation in Quantum Mechanics (Math. Phys. Appl. Math., Vol. 7), D. Reidel, Dordrecht (1981).

    Book  MATH  Google Scholar 

  12. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves [in Russian], Nauka, Moscow (1972); English transl.: Short-Wavelength Diffraction Theory: Asymptotic Methods, (Springer Ser. Wave Phenom., Vol. 4) (1991)

    Google Scholar 

  13. V. M. Babich, V. S. Buldyrev, and I. A. Molotkov, Space–Time Ray Method: Linear and Nonlinear Waves [in Russian], Leningrad Univ. Press, Leningrad (1985).

    Google Scholar 

  14. B. P. Maslov, The Complex WKB Method for Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl. (Progr. Phys., Vol. 16), Birkhaüser, Basel (1994).

    Book  Google Scholar 

  15. A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, and B. Tirozzi, “Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics,” Theor. Math. Phys., 193, 1761–1782 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. M. Babich and M. M. Popov, “Propagation of concentrated sound beams in a three-dimensional inhomogeneous medium [in Russian],” Akust. Zh., 27, 828–835 (1981)

    MathSciNet  Google Scholar 

  17. M. M. Popov, “Method for summing Gaussian beams in isotropic theory of elasticity [in Russian],” Izv. Akad. Nauk SSSR Ser. Fizika Zemli, 9, 39–50 (1983)

    Google Scholar 

  18. J. V. Ralston, “On the construction of quasimodes associated with stable periodic orbits,” Comm. Math. Phys., 51, 219–242 (1976); Erratum, 67, 91 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  20. V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, and A. A. Yevseyevich, “Quantization of closed orbits in Dirac theory by Maslov’s complex germ method,” J. Math. Phys. A: Math. Gen., 27, 1021–1043 (1994); “Quasiclassical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori,” J. Math. Phys. A: Math. Gen., 27, 5273–5306 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. G. Bagrov, V. V. Belov, and I. M. Ternov, “Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field,” Theor. Math. Phys., 50, 256–261 (1982).

    Article  MathSciNet  Google Scholar 

  22. V. V. Belov, V. M. Olive, and J. L. Volkova, “The Zeeman effect for the ‘anisotropic hydrogen atom’ in the complexWKB approximation: I. Quantization of closed orbits for the Pauli operator with spin-orbit interaction,” J. Phys. A: Math. Gen., 28, 5799–5810 (1995); “The Zeeman effect for the ‘anisotropic hydrogen atom’ in the complex WKB approximation: II. Quantization of two-dimensional Lagrangian tori (with focal points) for the Pauli operator with spin-orbit interaction,” J. Phys. A: Math. Gen., 28, 5811–5829 (1995).

    Article  ADS  MATH  Google Scholar 

  23. V. V. Belov and S. Yu. Dobrokhotov, “Semiclassical maslov asymptotics with complex phases: I. General approach,” Theor. Math. Phys., 92, 843–868 (1992)

    Article  MathSciNet  Google Scholar 

  24. V. V. Belov, O. S. Dobrokhotov, and S. Yu. Dobrokhotov, “Isotropic tori, complex germ and Maslov index, normal forms and quasimodes of multidimensional spectral problems,” Math. Notes, 69, 437–466 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Yu. Dobrokhotov and A. I. Shafarevich, “Semiclassical quantization of isotropic manifolds of Hamiltonian systems [in Russian],” in: Topological Methods in Theory of Hamiltonian Systems, Faktorial, Moscow (1998), pp. 41–114.

    Google Scholar 

  26. S. Yu. Dobrokhotov, A. Cardinali, A. I. Klevin, and B. Tirozzi, “Maslov complex germ and high-frequency Gaussian beams for cold plasma in a toroidal domain,” Dokl. Math., 94, 480–485 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  27. V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974); English transl. (Grad. Texts Math., Vol. 60), Springer, New York (1989)

    Book  MATH  Google Scholar 

  28. R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, Mass. (1978)

    MATH  Google Scholar 

  29. A. V. Tsiganov, “The Maupertuis principle and canonical transformations of the extended phase space,” J. Nonlinear Math. Phys., 8, 157–182 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. S. Yu. Dobrokhotov and M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory,” Asymptotic. Anal., 74, 33–73 (2011)

    MATH  MathSciNet  Google Scholar 

  31. S. Yu. Dobrokhotov and M. Rouleux, “The semiclassical Maupertuis–Jacobi correspondence and applications to linear water waves theory,” Math. Notes, 87, 430–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Yu. Dobrokhotov, D. S. Minenkov, and M. Rouleux, “The Maupertuis–Jacobi principle for Hamiltonians of the form F(x, |p|) in two-dimensional stationary semiclassical problems,” Math. Notes, 97, 42–49 (2015). 1081

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Anikin.

Additional information

This research is supported by a grant from the Russian Science Foundation (Project No. 16-11-10282).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 1, pp. 135–160, July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.Y., Dobrokhotov, S.Y., Klevin, A.I. et al. Gaussian Packets and Beams with Focal Points in Vector Problems of Plasma Physics. Theor Math Phys 196, 1059–1081 (2018). https://doi.org/10.1134/S0040577918070115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918070115

Keywords

Navigation