Skip to main content
Log in

Dynamical Symmetry Breaking in Geometrodynamics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using a first-order perturbative formulation, we analyze the local loss of symmetry when a source of electromagnetic and gravitational fields interacts with an agent that perturbs the original geometry associated with the source. We had proved that the local gauge groups are isomorphic to local groups of transformations of special tetrads. These tetrads define two orthogonal planes at every point in space–time such that every vector in these local planes is an eigenvector of the Einstein–Maxwell stress–energy tensor. Because the local gauge symmetry in Abelian or even non-Abelian field structures in four-dimensional Lorentzian space–times is manifested by the existence of local planes of symmetry, the loss of symmetry is manifested by a tilt of these planes under the influence of an external agent. In this strict sense, the original local symmetry is lost. We thus prove that the new planes at the same point after the tilting generated by the perturbation correspond to a new symmetry. Our goal here is to show that the geometric manifestation of local gauge symmetries is dynamical. Although the original local symmetries are lost, new symmetries arise. This is evidence for a dynamical evolution of local symmetries. We formulate a new theorem on dynamical symmetry evolution. The proposed new classical model can be useful for better understanding anomalies in quantum field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu and G. Jonna-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity: I,” Phys. Rev., 122, 345–358 (1961).

    Article  ADS  Google Scholar 

  2. J. Schwinger, “Gauge invariance and mass,” Phys. Rev., 125, 397–398 (1962); “Gauge invariance and mass: II,” Phys. Rev., 128, 2425–2428 (1962).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. R. Jackiw and K. Johnson, “Dynamical model of spontaneously broken gauge symmetries,” Phys. Rev. D, 8, 2386–2397 (1973).

    Article  ADS  Google Scholar 

  4. J. M. Cornwall and R. E. Norton, “Spontaneous symmetry breaking without scalar mesons,” Phys. Rev. D, 8, 3338–3345 (1973).

    Article  ADS  Google Scholar 

  5. D. J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D, 10, 3235–3253 (1974).

    Article  ADS  Google Scholar 

  6. E. J. Eichten and F. L. Feinberg, “Dynamical symmetry breaking of non-Abelian gauge symmetries,” Phys. Rev. D, 10, 3254–3279 (1974).

    Article  ADS  Google Scholar 

  7. S. Coleman, R. Jackiw, and H. D. Politzer, “Spontaneous symmetry breaking in the O(N) model for large N,” Phys. Rev. D, 10, 2491–2499 (1974).

    Article  ADS  Google Scholar 

  8. J. M. Cornwall, R. Jackiw, and E. Tomboulis, “Effective action for composite operators,” Phys. Rev. D, 10, 2428–2445 (1975).

    Article  MATH  ADS  Google Scholar 

  9. S.-H. H. Tye, E. Tomboulis, and E. C. Poggio, “Dynamical symmetry breaking in non-Abelian field theories,” Phys. Rev. D, 11, 2839–2855 (1975).

    Article  ADS  Google Scholar 

  10. K. Lane, “Comment on the analogy between chiral-symmetry breakdown and superconductivity,” Phys. Rev. D, 10, 1353–1355 (1974).

    Article  ADS  Google Scholar 

  11. S. Weinberg, “Implications of dynamical symmetry breaking,” Phys. Rev. D, 13, 974–996 (1976).

    Article  ADS  Google Scholar 

  12. A. Garat, “Tetrads in geometrodynamics,” J. Math. Phys, 46, 102502 (2005); Erratum, 55, 019902 (2014).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. J. A. Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, Springer, Berlin (1954).

    Book  MATH  Google Scholar 

  14. P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Lett., 13, 508–509 (1964); “Broken symmetries, massless particles, and gauge fields,” Phys. Lett., 12, 132–133 (1965); “Spontaneous symmetry breakdown without massless bosons,” Phys. Rev., 145, 1156–1163 (1966)

    Article  MathSciNet  Google Scholar 

  15. F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett., 13, 321–323 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  16. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles,” Phys. Rev. Lett., 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  17. T. W. Kibble, “Symmetry breaking in non-Abelian gauge theories,” Phys. Rev., 155, 1554–1561 (1967).

    Article  ADS  Google Scholar 

  18. C. Misner and J. A. Wheeler, “Classical physics as geometry,” Ann. Phys., 2, 525–603 (1957).

    Article  MATH  ADS  Google Scholar 

  19. N. Cabibbo and E. Ferrari, “Quantum electrodynamics with Dirac monopoles,” Nuovo Cimento, 23, 1147–1154 (1962).

    Article  MathSciNet  Google Scholar 

  20. R. Lazkoz, J. M. M. Senovilla, and R. Vera, “Conserved superenergy currents,” Class. Q. Grav., 20, 4135–4152 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. G. Bergqvist, I. Eriksson, and J. M. M. Senovilla, “New electromagnetic conservation laws,” Class. Q. Grav., 20, 2663–2668 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. J. M. M. Senovilla, “General electric-magnetic decomposition of fields, positivity, and Rainich-like conditions,” in: Reference Frames and Gravitomagnetism (Proc. 23rd Spanish Relativity Meeting “EREs2000,” J. F. Pascual-Sánchez, L. Floría, A. San Miguel, and F. Vicente, eds.), World Scientific, Singapore (2001), pp. 145–164; arXiv:gr-qc/0010095v2 (2000).

    Chapter  Google Scholar 

  23. J. M. M. Senovilla, “Super-energy tensors,” Class. Q. Grav., 17, 2799–2841 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. D. J. Gross, “Gauge theory—past, present, and future,” Chinese J. Phys., 30, 955–972 (1992).

    ADS  Google Scholar 

  25. S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).

    Google Scholar 

  26. L. Papantonopoulos, ed., Physics of Black Holes: A Guided Tour (Lect. Notes Phys., Vol. 769), Springer, Berlin (2009).

  27. T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev., 108, 1063–1069 (1957).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. V. Moncrief, “Gravitational perturbations of spherically symmetric systems: I. The exterior problem,” Ann. Phys., 88, 323–342 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Garat and R. Price, “Gauge invariant formalism for second order perturbations of Schwarzschild spacetimes,” Phys. Rev. D, 61, 044006 (2000).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Garat.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 195, No. 2, pp. 313–328, May, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garat, A. Dynamical Symmetry Breaking in Geometrodynamics. Theor Math Phys 195, 764–776 (2018). https://doi.org/10.1134/S0040577918050100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918050100

Keywords

Navigation