Skip to main content
Log in

Quasiaverages and Degenerate Quantum Equilibriums of Magnetic Systems with SU(3) Symmetry of the Exchange Interaction

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider magnetic systems with the SU(3) symmetry of the exchange interaction. For degenerate equilibriums with broken magnetic and phase symmetries, we formulate classification equations for the order parameter using the concept of residual symmetry. Based on them, we obtain an explicit form of the equilibrium values of the order parameters of a spin nematic and an antiferromagnet in the general form. We clarify the existence conditions for six types of superfluid equilibriums for the order parameter describing the Bose pair condensate. We study inhomogeneous equilibriums and obtain the explicit coordinate dependence of the magnetic order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lacroix, P. Mendels, and F. Mila, eds., Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer Ser. Solid-State Sci., Vol. 164), Springer, Berlin (2011).

    Book  Google Scholar 

  2. A. Lauchli, F. Mila, and K. Penc, “Quadrupolar phases of the S=1 bilinear–biquadratic Heisenberg model on the triangular lattice,” Phys. Rev. Lett., 97, 087205 (2006); Erratum, 97, 229901 (2006).

    Article  ADS  Google Scholar 

  3. P. Li, G.-M. Zhang, and S.-Q. Shen, “SU(3) bosons and the spin nematic state on the spin-1 bilinear–biquadratic triangular lattice,” Phys. Rev. B, 75, 104420 (2007).

    Article  ADS  Google Scholar 

  4. P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, “Multipolar interactions in f-electron systems: The paradigm of actinide dioxides,” Rev. Modern Phys., 81, 807–863 (2009).

    Article  ADS  Google Scholar 

  5. M. E. Zhitomirsky and H. Tsunetsugu, “Magnon pairing in quantum spin nematic,” Europhys. Lett., 92, 37001 (2010).

    Article  Google Scholar 

  6. V. G. Bar’yakhtar, V. I. Butrim, A. K. Kolezhuk, and B. A. Ivanov, “Dynamics and relaxation in spin nematics,” Phys. Rev. B, 87, 224407 (2013).

    Article  ADS  Google Scholar 

  7. T. Zibold, V. Corre, C. Frapolli, A. Invernizzi, J. Dalibard, and F. Gerbier, “Spin-nematic order in antiferromagnetic spinor condensates,” Phys. Rev. A, 93, 023614 (2016).

    Article  ADS  Google Scholar 

  8. T.-L. Ho, “Spinor bose condensates in optical traps,” Phys. Rev. Lett., 81, 742–745 (1998).

    Article  ADS  Google Scholar 

  9. T. Ohmi and T. Machida, “Bose–Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan, 67, 1822–1825 (1998).

    Article  ADS  Google Scholar 

  10. R. Barnett, A. Turner, and E. Demler, “Classifying novel phases of spinor atoms,” Phys. Rev. Lett., 97, 180412 (2006); arXiv:cond-mat/0607253v4 (2006).

    Article  ADS  Google Scholar 

  11. L. Michel, “Symmetry defects and broken symmetry: Configurations hidden symmetry,” Rev. Modern Phys., 52, 617–651 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. P. Mineev, “Topologically stable inhomogeneous states in ordered media [in Russian],” Preprint, Landau Inst. Theor. Phys., Chernogolovka (1980).

    Google Scholar 

  13. H. Mäkela and K. A. Suominen, “Inert states of spin-S systems,” Phys. Rev. Lett., 99, 190408 (2007).

    Article  Google Scholar 

  14. S.-K. Yip, “Symmetry and inert states of spin Bose–Einstein condensates,” Phys. Rev. A, 75, 023625 (2007).

    Article  ADS  Google Scholar 

  15. Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep., 520, 253–381 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  16. F. Zhou and M. Snoek, “Spin singlet Mott states and evidence for spin singlet quantum condensates of spin-one bosons in lattices,” Ann. Phys., 308, 692–738 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Y.-Q. Li, S.-J. Gu, and Z.-J. Ying, “One-dimensional SU(3) bosons with δ-function interaction,” J. Phys. A: Math. Gen., 36, 2821–2838 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. C. M. Puetter, M. J. Lawler, and H.-Y. Kee, “Theory of the spin-nematic to spin-Peierls quantum phase transition in ultracold spin-1 atoms in optical lattices,” Phys. Rev. B, 78, 165121 (2008).

    Article  ADS  Google Scholar 

  19. N. N. Bogoliubov, “Quasiaverages in problems in statistical mechanics [in Russian],” Preprint D-781, Joint Inst. Nucl. Res., Dubna (1961).

    Google Scholar 

  20. N. N. Bogoliubov and N. N. Bogoliubov Jr., Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984); English transl. (2nd ed.), World Scientific, Singapore (2009).

    Book  MATH  Google Scholar 

  21. N. N. Bogolyubov Jr., M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, and A. N. Tarasov, “On the microscopic theory of superfluid liquids,” Sov. Phys. Usp., 32, 1041–1059 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Yu. Kovalevsky and S. V. Peletminsky, “Statistical mechanics of quantum fluids with triplet pairing [in Russian],” Fiz. Elem. Chast. i Atom. Yadra, 33, 1357–1442 (2002).

    Google Scholar 

  23. N. N. Bogolyubov Jr., D. A. Demyanenko, M. Y. Kovalevsky, and N. N. Chekanova, “Quasiaverages and classification of equilibrium states of condensed media with spontaneously broken symmetry,” Phys. Atom. Nucl., 72, 761–767 (2009).

    Article  ADS  Google Scholar 

  24. M. Yu. Kovalevsky, “Classifying magnetic and superfluid equilibrium states in magnets with the spin s = 1,” Theor. Math. Phys., 186, 395–410 (2016).

    Article  MathSciNet  Google Scholar 

  25. N. Papanicolaou, “Unusual phases in quantum spin-1 systems,” Nucl. Phys. B, 305, 367–395 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Yu. Kovalevskii and S. V. Peletminskii, Statistical Mechanics of Quantum Liquids and Crystals [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

  27. N. N. Bogoliubov, “Toward a theory of superfluidity [in Russian],” Izv. AN SSSR. Ser. Phys., 11, 77–90 (1947).

    Google Scholar 

  28. E. P. Gross, “Quantum theory of interacting bosons,” Ann. Phys., 9, 292–324 (1960).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. A. S. Peletminskii, S. V. Peletminskii, and Yu. M. Poluektov, “Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction,” Condens. Matter Phys., 16, 13603 (2013); arXiv:1303.5539v1 [cond-mat.stat-mech] (2013).

    Article  Google Scholar 

  30. I. V. Bogoyavlenskii, L. V. Karhatsevich, Zh. A. Kozlov, and A. V. Puchkov, “Bose condensation in liquid helium-4,” Sov. J. Low Temp. Phys., 16, 77 (1990).

    Google Scholar 

  31. H. R. Glyde, S. O. Diallo, R. T. Azuah, O. Kirichek, and J. W. Taylor, “Bose–Einstein condensation in liquid 4He under pressure,” Phys. Rev. B, 83, 100507 (2011).

    Article  ADS  Google Scholar 

  32. I. A. Vakarchuk, “Density matrices of superfluid helium-4: II,” Theor. Math. Phys., 82, 308–316 (1990).

    Article  Google Scholar 

  33. A. I. Akhiezer, S. V. Peletminskii, and Yu. V. Slyusarenko, “Theory of a weakly nonideal Bose gas in a magnetic field,” JETP, 86, 501–506.

  34. N. D. Mermin, “d-Wave pairing near the transition temperature,” Phys. Rev. A, 9, 868–872 (1974).

    Article  ADS  Google Scholar 

  35. E. I. Kats, “Spontaneous chiral symmetry breaking in liquid crystals,” Low Temperature Physics, 43, 5–7 (2017).

    Article  ADS  Google Scholar 

  36. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London (1990).

    Google Scholar 

  37. I. E. Dzyaloshinskii, “Theory of helicoidal structures in antiferromagnets: I. Nonmetals,” JETP, 19, 960 (1964).

    Google Scholar 

  38. M. Yu. Kovalevsky, “Quasi-averages in the solution of the classification problem for equilibriums of condensed media with a spontaneously broken symmetry,” Theor. Math. Phys., 160, 1113–1123 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bogolyubov Jr..

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 195, No. 2, pp. 240–255, May, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolyubov, N.N., Glushchenko, A.V. & Kovalevskii, M.Y. Quasiaverages and Degenerate Quantum Equilibriums of Magnetic Systems with SU(3) Symmetry of the Exchange Interaction. Theor Math Phys 195, 704–717 (2018). https://doi.org/10.1134/S0040577918050069

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918050069

Keywords

Navigation