Skip to main content
Log in

Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett., 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Modern Phys., 81, 865–942 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett., 88, 017901 (2001).

    Article  ADS  MATH  Google Scholar 

  4. W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Modern Phys., 75, 715–775 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, “Unified view of quantum and classical correlations,” Phys. Rev. Lett., 104, 080501 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. E. Zobov, “Quantum and classical correlations in high-temperature dynamics of two coupled large spins,” Theor. Math. Phys., 177, 1377–1389 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys., 8, 117–120 (2012).

    Article  ADS  Google Scholar 

  8. C. C. Rulli and M. S. Sarandy, “Global quantum discord in multipartite systems,” Phys. Rev. A., 84, 042109 (2011).

    Article  ADS  Google Scholar 

  9. M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nature Phys., 6, 659–662 (2010).

    Article  ADS  Google Scholar 

  10. D. V. Khveshchenko, “Entanglement and decoherence in near-critical qubit chains,” Phys. Rev. B, 68, 193307 (2003).

    Article  ADS  Google Scholar 

  11. G. F. Zhang and S. S. Li, “Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field,” Phys. Rev. A, 72, 034302 (2005).

    Article  ADS  Google Scholar 

  12. J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature, 410, 1067–1070 (2001).

    Article  ADS  Google Scholar 

  13. C.-Y. Chen, “Approximate and conditional teleportation of an unknown atomic state with dissipative Jaynes–Cummings model,” Commun. Theor. Phys., 49, 355–358 (2008).

    Article  ADS  Google Scholar 

  14. G.-H. Yang and B.-B. Zhang, “Quantum discord behaviors in two qubits spin squeezing model with intrinsic decoherence,” Internat. J. Theor. Phys., 55, 2588–2597 (2015).

    MATH  Google Scholar 

  15. G.-H. Yang, “Thermal entanglement properties in two kinds of two-qubit spin squeezing model,” Internat. J. Theor. Phys., 55, 3191–3199 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Henderson and V. Vedral, “Classical, quantum, and total correlations,” J. Phys. A: Math. Gen., 34, 6899–6905 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. B. Groisman, S. Popescu, and A. Winter, “Quantum, classical, and total amount of correlations in a quantum state,” Phys. Rev. A, 72, 032317 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett., 104, 200401 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  19. X.-Q. Yan and B. Zhang, “Collapse–revival of quantum discord and entanglement,” Ann. Phys., 349, 350–356 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum,” Phys. Rev. A, 77, 022301 (2008)

    Article  ADS  Google Scholar 

  21. S. Wu, U. V. Poulsen, and K. Mølmer, “Correlations in local measurements on a quantum state and complementarity as an explanation of nonclassicality,” Phys. Rev. A, 80, 032319 (2009).

    Article  ADS  Google Scholar 

  22. A. Datta, “Quantum discord between relatively accelerated observers,” Phys. Rev. A, 80, 052304 (2009)

    Article  ADS  Google Scholar 

  23. R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B, 78, 224413 (2008)

    Article  ADS  Google Scholar 

  24. M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A, 80, 022108 (2009)

    Article  ADS  Google Scholar 

  25. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A, 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. V. Vedral, “The elusive source of quantum speedup,” Found. Phys., 40, 1141–1154 (2010) arXiv:0906.3656v1 [quant-ph] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. W. H. Zurek, “Einselection and decoherence from an information theory perspective,” Ann. Phys., 9, 855–864 (2000).

    Article  MathSciNet  Google Scholar 

  28. Y. Yao, H.-W. Li, X.-B. Zou, J.-Z. Huang, C.-M. Zhang, Z.-Q. Yin, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum discord in quantum random access codes and its connection to dimension witnesses,” Phys. Rev. A, 86, 062310 (2012).

    Article  ADS  Google Scholar 

  29. G. Zhihua, C. Huaixin, and Q. Shixian, “Partial correlations in multipartite quantum systems,” Inf. Sci., 289, 262–272 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  30. U. Singh and A. K. Pati, “Quantum discord with weak measurements,” Ann. Phys., 343, 141–152 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett., 60, 1351–1354 (1998).

    Article  ADS  Google Scholar 

  32. M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A, 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  33. X. Wang and B. C. Sanders, “Spin squeezing and pairwise entanglement for symmetric multiqubit states,” Phys. Rev. A, 68, 012101 (2003).

    Article  ADS  Google Scholar 

  34. R. Wang and G.-H. Yang, “Entanglement teleportation via two-qubit spin squeezing model,” Internat. J. Theor. Phys., 55, 920–926 (2015).

    MathSciNet  MATH  Google Scholar 

  35. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett., 80, 2245–2248 (1998).

    Article  ADS  MATH  Google Scholar 

  36. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A, 81, 042105 (2010).

    Article  ADS  Google Scholar 

  37. M. Ali, A. R. P. Rau, and G. Alber, “Erratum: Quantum discord for two-qubit X states,” Phys. Rev. A, 82, 069902 (2010).

    Article  ADS  Google Scholar 

  38. Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H. Oh, “Quantum discord of two-qubit X states,” Phys. Rev. A, 84, 042313 (2011).

    Article  ADS  Google Scholar 

  39. S. M. Aldoshin, E. B. Fel’dman, and M. A. Yurishchev, “Quantum entanglement and quantum discord in magnetoactive materials,” Low Temperature Phys., 40, 3–16 (2014).

    Article  ADS  Google Scholar 

  40. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A, 80, 024103 (2009).

    Article  ADS  Google Scholar 

  41. B. Liu, B. Shao, and J. Zou, “Quantum discord for a central two-qubit system coupled to an XY -spin-chain environment,” Phys. Rev. A, 82, 062119 (2010).

    Article  ADS  Google Scholar 

  42. R. Jozsa, “Fidelity for mixed quantum states,” J. Modern Opt., 41, 2315–2323 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ahadpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadpour, S., Mirmasoudi, F. Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model. Theor Math Phys 195, 628–639 (2018). https://doi.org/10.1134/S004057791804013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791804013X

Keywords

Navigation