Skip to main content
Log in

Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider differential–difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Papageorgiou and F. W. Nijhoff, “On some integrable discrete-time systems associated with the Bogoyavlensky lattices,” Phys. A: Stat. Mech. Appl., 228, 172–188 (1996).

    Article  MathSciNet  Google Scholar 

  2. D. Levi, M. Petrera, C. Scimiterna, and R. Yamilov, “On Miura transformations and Volterra-type equations associated with the Adler–Bobenko–Suris equations,” SIGMA, 4, 077 (2008).

    MathSciNet  MATH  Google Scholar 

  3. V. E. Adler and V. V. Postnikov, “On discrete 2D integrable equations of higher order,” J. Phys. A: Math. Theor., 47, 045206 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. N. Garifullin, A. V. Mikhailov, and R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries,” Theor. Math. Phys., 180, 765–780 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. B. Suris, “Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice,” Phys. Lett. A, 206, 153–161 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Yu. B. Suris, “A discrete-time relativistic Toda lattice,” J. Phys. A: Math. Gen., 29, 451–465 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Yu. B. Suris, “New integrable systems related to the relativistic Toda lattice,” J. Phys. A: Math. Gen., 30, 1745–1761 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. V. E. Adler, “Legendre transforms on a triangular lattice,” Funct. Anal. Appl., 34, 1–9 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. E. Adler, “On the structure of the Bäcklund transformations for the relativistic lattices,” J. Nonlinear Math. Phys., 7, 34–56 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. E. Adler and Yu. B. Suris, “Q4: Integrable master equation related to an elliptic curve,” Int. Math. Res. Not., 2004, 2523–2553 (2004).

    Article  MATH  Google Scholar 

  11. R. Boll and Yu. B. Suris, “Non-symmetric discrete Toda systems from quad-graphs,” Appl. Anal., 89, 547–569 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. E. Adler and A. B. Shabat, “On the one class of hyperbolic systems,” SIGMA, 2, 093 (2006) arXiv: nlin.SI/0612060v1 (2006).

    MathSciNet  MATH  Google Scholar 

  13. R. I. Yamilov, “On the classification of discrete evolution equations [in Russian],” Uspekhi Mat. Nauk, 38, No. 6(234), 155–156 (1983).

    Google Scholar 

  14. R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations,” J. Phys. A: Math. Gen., 39, R541–R623 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. E. Adler, “Necessary integrability conditions for evolutionary lattice,” Theor. Math. Phys., 181, 1367–1382 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. E. Adler, “Higher-dimensional Contou-Carr`ere symbol and continuous automorphisms,” Funct. Anal. Appl., 50, 268–280 (2016).

    Article  MathSciNet  Google Scholar 

  17. R. N. Garifullin, R. I. Yamilov, and D. Levi, “Classification of five-point differential–difference equations,” J. Phys. A: Math. Theor., 50, 125201 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. N. Garifullin and R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters,” J. Phys. A: Math. Theor., 45, 345205 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations,” J. Math. Phys., 16, 598–603 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. T. Tsuchida, “Integrable discretizations of derivative nonlinear Schr¨odinger equations,” J. Phys. A: Math. Gen., 35, 7827–7847 (2002).

    Article  ADS  MATH  Google Scholar 

  21. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Discrete nonlinear hyperbolic equations: Classification of integrable cases,” Funct. Anal. Appl., 43, 3–17 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Adler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, V.E. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains. Theor Math Phys 195, 513–528 (2018). https://doi.org/10.1134/S0040577918040037

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918040037

Keywords

Navigation