Theoretical and Mathematical Physics

, Volume 194, Issue 3, pp 415–438 | Cite as

Anisotropic Cosmology with a Dilaton Field Coupled to Ghost Dark Energy

  • H. Hossienkhani
  • V. Fayaz
  • S. A. A. Terohid
  • N. Azimi
  • Z. Zarei
  • M. Ganji


We study a dilaton scalar field coupled to ghost dark energy in an anisotropic universe. The evolution of dark energy, which dominates the universe, can be completely described by a single dilaton scalar field. This connection allows reconstructing the kinetic energy and also the dynamics of the dilaton scalar field according to the evolution of the energy density. Using the latest observational data, we obtain bounds on the ghost dark energy models and also on generalized dark matter and dark energy. For this, we investigate how the expansion history H(z) is determined by observational quantities. We calculate the evolution of density perturbations in the linear regime for both ghost and generalized ghost dark energy and compare the results with ΛCDM models. We discuss the justification of the generalized second law of thermodynamics in a Bianchi type-I universe. The obtained model is stable for large time intervals but is unstable at small times.


anisotropic universe ghost dark energy generalized ghost dark energy dilaton scalar field generalized second law of thermodynamics perturbation theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Reiss et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. J., 517, 565–586 (1999).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    D. N. Spergel et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl., 148, 175–194 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    D. N. Spergel et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology,” Astrophys. J. Suppl., 170, 377–408 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    C. Wetterich, “Cosmology and the fate of dilatation symmetry,” Nucl. Phys. B, 302, 668–696 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Phys. Rev. D, 37, 3406–3427 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration,” Phys. Rev. Lett., 85, 4438–4441 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “Essentials of k-essence,” Phys. Rev. D, 63, 103510 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    T. Padmanabhan, “Accelerated expansion of the universe driven by tachyonic matter,” Phys. Rev. D, 66, 021301 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sen, “Tachyon matter,” JHEP, 0207, 065 (2002).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state,” Phys. Lett. B, 545, 23–29 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    S. Nojiri and S. D. Odintsov, “Quantum de Sitter cosmology and phantom matter,” Phys. Lett. B, 562, 147–152 (2003).ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S. Nojiri and S. D. Odintsov, “de Sitter brane universe induced by phantom and quantum effects,” Phys. Lett. B, 565, 1–9 (2003).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, “Ghost condensation and a consistent infrared modification of gravity,” JHEP, 0405, 074 (2004).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Piazza and S. Tsujikawa, “Dilatonic ghost condensate as dark energy,” J. Cosmol. Astropart. Phys., 07, 004 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology in a (phantom) scalar–tensor theory: Dark energy and the cosmic speed-up,” Phys. Rev. D, 70, 043539 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D, 71, 063004 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. Anisimov, E. Babichev, and A. Vikman, “B-inflation,” J. Cosmol. Astropart. Phys., 06, 006 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    E. Witten, “The cosmological constant from the viewpoint of string theory,” in: Sources and Detection of Dark Matter and Dark Energy in the Universe (Marina del Rey, Calif, USA, 23–25 February 2000, D. B. Cline, ed.), Springer, Berlin (2001), pp. 27–36.CrossRefGoogle Scholar
  20. 20.
    R.-G. Cai, “A dark energy model characterized by the age of the Universe,” Phys. Lett. B, 657, 228–231 (2007).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    H. Wei and R.-G. Cai, “A new model of agegraphic dark energy,” Phys. Lett. B, 660, 113–117 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Internat. J. Modern Phys. D, 15, 1753–1935 (2006).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark energy,” Commun. Theor. Phys., 56, 525–604 (2011).ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Relativ., 13, 3–161 (2010).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Capozziello and M. de Laurentis, “Extended theories of gravity,” Phys. Rep., 509, 167–320 (2011).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep., 513, 1–189 (2012).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models,” Phys. Rep., 505, 59–114 (2011).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    G. Dvali, G. Gabadadze, and M. Porrati, “4D gravity on a brane in 5D Minkowski space,” Phys. Lett. B, 485, 208–214 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    M. S. Carena, J. Lykken, M. Park, and J. Santiago, “Self-acclerating warped braneworlds,” Phys. Rev. D, 75, 026009 (2007).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Minamitsuji, “Self-accelerating solutions in the cascading DGP braneworld,” Phys. Lett. B, 684, 92–95 (2010).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Sheykhi, B. Wang, and N. Riazi, “String inspired explanation for the superacceleration of our Universe,” Phys. Rev. D, 75, 123513 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    F. R. Urban and A. R. Zhitnitsky, “Cosmological constant from the ghost: A toy model,” Phys. Rev. D, 80, 063001 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    N. Ohta, “Dark energy and QCD ghost,” Phys. Lett. B, 695, 41–44 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    F. R. Urban and A. R. Zhitnitsky, “Cosmological constant, violation of cosmological isotropy, and CMB,” J. Cosmol. Astropart. Phys., 09, 018 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    E. Witten, “Current algebra theorems for the U(1) ‘Goldstone boson’,” Nucl. Phys. B, 156, 269–283 (1979).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    F. R. Urban and A. R. Zhitnitsky, “The cosmological constant from the QCD Veneziano ghost,” Phys. Lett. B, 688, 9–12 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    G. Veneziano, “U(1) without instantons,” Nucl. Phys. B, 159, 123–224 (1979).MathSciNetCrossRefGoogle Scholar
  38. 38.
    F. R. Urban and A. R. Zhitnitsky, “The QCD nature of dark energy,” Nucl. Phys. B, 835, 135–173 (2010).ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    A. R. Zhitnitsky, “Contact term, its holographic description in QCD, and dark energy,” Phys. Rev. D, 86, 045026 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    M. Maggiore, “Zero-point quantum fluctuations and dark energy,” Phys. Rev. D, 83, 063514 (2011).ADSCrossRefGoogle Scholar
  41. 41.
    E. Ebrahimi and A. Sheykhi, “Instability of QCD ghost dark energy model,” Internat. J. Modern Phys. D, 20, 2369–2381 (2011).ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    A. Sheykhi, “Holographic scalar field models of dark energy,” Phys. Rev. D, 84, 107302 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    A. Sheykhi, “Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff,” Class. Q. Grav., 27, 025007 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 43a.
    M. Mazumder and S. Chakraborty, “Validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in holographic dark energy model,” Gen. Rel. Grav., 42, 813–820 (2010).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 44.
    M. Sharif and M. Zubair, “Thermodynamics in f(R, T) theory of gravity,” J. Cosmol. Astropart. Phys., 3, 028 (2012); Erratum, 5, E01 (2012); arXiv:1204.0848v2 [gr-qc] (2012); “Thermodynamic behavior of particular f(R, T)-gravity models,” JETP, 117, 248–257 (2013).Google Scholar
  46. 45.
    K. Karami and A. Abdolmaleki, “Generalized second law of thermodynamics in f(T) gravity,” J. Cosmol. Astropart. Phys., 04, 007 (2012); arXiv:1201.2511v2 [gr-qc] (2012).Google Scholar
  47. 46.
    H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Górski, and P. B. Lilje, “Asymmetries in the cosmic microwave background anisotropy field,” Astrophys. J., 605, 14–20 (2004).ADSCrossRefGoogle Scholar
  48. 47.
    T. R. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Górski, and F. K. Hansen, “Fast and efficient template fitting of deterministic anisotropic cosmological models applied to WMAP data,” Astrophys. J., 643, 616–629 (2006).ADSCrossRefGoogle Scholar
  49. 48.
    L. Campanelli, P. Cea, and L. Tedesco, “Ellipsoidal universe can solve the cosmic microwave background quadrupole problem,” Phys. Rev. Lett., 97, 131302 (2006); Erratum, 97, 209903 (2006).ADSCrossRefGoogle Scholar
  50. 49.
    B. Saha, “Anisotropic cosmological models with perfect fluid and dark energy,” Chinese J. Phys., 43, 1035–1043 (2005); arXiv:gr-qc/0412078v1 (2004).ADSGoogle Scholar
  51. 50.
    K. S. Adhav, “Binary mixture of anisotropic dark energy and perfect fluid in Kantowski–Sach universe,” Eur. Phys. J. Plus, 126, 103 (2011).CrossRefGoogle Scholar
  52. 51.
    G. P. Singh, Binaya K. Bishi, and P. K. Sahoo, “Bianchi type-I bulk viscous cosmology with Chaplygin gas in Lyra geometry,” Chinese J. Phys., 54, 895–905 (2016).ADSMathSciNetCrossRefGoogle Scholar
  53. 52.
    Shri Ram, S. Chandel, and M. K. Verma, “Kantowski–Sachs universe with anisotropic dark energy in Lyra geometry,” Chinese J. Phys., 54, 953–959 (2016).ADSMathSciNetCrossRefGoogle Scholar
  54. 53.
    H. Hossienkhani, “Bianchi type I universe and interacting ghost scalar fields models of dark energy,” Astrophys. Space Sci., 361, 136 (2016).ADSMathSciNetCrossRefGoogle Scholar
  55. 54.
    G. P. Singh, Binaya K. Bishi, and P. K. Sahoo, “Scalar field and time varying cosmological constant in f(R, T) gravity for Bianchi type-I universe,” Chinese J. Phys., 54, 244–255 (2016).ADSMathSciNetCrossRefGoogle Scholar
  56. 55.
    S. D. Katore, A. Y. Shaikh, and A. S. Bhaskar, “Anisotropic dark energy cosmological models from early deceleration to late time acceleration in Lyra geometry,” Bulg. J. Phys., 41, 34–59 (2014).Google Scholar
  57. 56.
    S. D. Katore and S. P. Hatkar, “Kaluza Klein universe with magnetized anisotropic dark energy in general relativity and Lyra manifold,” New Astronomy, 34, 172–177 (2015).ADSCrossRefGoogle Scholar
  58. 57.
    A. Pradhan and A. K. Vishwakarma, “A new class of LRS Bianchi type-I cosmological models in Lyra geometry,” J. Geom. Phys., 49, 332–342 (2004).ADSMathSciNetzbMATHGoogle Scholar
  59. 58.
    F. Rahaman, N. Begum, G. Bag, and B. C. Bhui, “Cosmological models with negative constant deceleration parameter in Lyra geometry,” Astrophys. Space Sci., 299, 211–218 (2005).ADSCrossRefGoogle Scholar
  60. 59.
    N. Azimi and F. Barati, “Instability of interacting ghost dark energy model in an anisotropic universe,” Internat. J. Theor. Phys., 55, 3318–3328 (2016).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 60.
    F. Barati, “Interacting generalized ghost dark energy in non-isotropic background,” Internat. J. Theor. Phys., 55, 2189–2198 (2015).MathSciNetzbMATHCrossRefGoogle Scholar
  62. 61.
    M. Gasperini, F. Piazza, and G. Veneziano, “Quintessence as a runaway dilaton,” Phys. Rev. D, 65, 023508 (2002).ADSCrossRefGoogle Scholar
  63. 62.
    M. Gasperini and R. Ricci, “Homogeneous conformal string backgrounds,” Class. Q. Grav., 12, 677–699 (1995)ADSMathSciNetCrossRefGoogle Scholar
  64. 62a.
    M. Gasperini, “Dilatonic interpretation of quintessence?,” Phys. Rev. D, 64, 043510 (2001).ADSCrossRefGoogle Scholar
  65. 63.
    R. H. Brandenberger, R. Easther, and J. Maia, “Nonsingular dilaton cosmology,” JHEP, 9808, 007 (1998).ADSCrossRefGoogle Scholar
  66. 64.
    C. Armendáriz-Picón, T. Damour, and V. Mukhanov, “k-Inflation,” Phys. Lett. B, 458, 209–218 (1999).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. 65.
    N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost inflation,” J. Cosmol. Astropart. Phys., 04, 001 (2004).ADSMathSciNetCrossRefGoogle Scholar
  68. 66.
    O. Bartolami, F. Gil Pedro, and M. Le Delliou, “Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586,” Phys. Lett. B, 654, 165 (2007).ADSCrossRefGoogle Scholar
  69. 67.
    B. Wang, Y. Gong, and E. Abdalla, “Transition of the dark energy equation of state in an interacting holographic dark energy model,” Phys. Lett. B, 624, 141–146 (2005).ADSCrossRefGoogle Scholar
  70. 68.
    A. A. Sen and D. Pavón, “Reconstructing the interaction rate in holographic models of dark energy,” Phys. Lett. B, 664, 7–11 (2008).ADSCrossRefGoogle Scholar
  71. 69.
    P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Modern Phys., 75, 559–606 (2003).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 70.
    J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D, 7, 2333–2346 (1973).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. 71.
    E. N. Saridakis, P. F. González-Díaz, and C. L. Sigüenza, “Unified dark energy thermodynamics: Varying w and the −1-crossing,” Class. Q. Grav., 26, 165003 (2009).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 72.
    M. Jamil, E. N. Saridakis, and M. R. Setare, “Thermodynamics of dark energy interacting with dark matter and radiation,” Phys. Rev. D, 81, 023007 (2010).ADSCrossRefGoogle Scholar
  75. 73.
    H. Wei, “Entropy-corrected holographic dark energy,” Commun. Theor. Phys., 52, 743–749 (2009).ADSzbMATHCrossRefGoogle Scholar
  76. 74.
    S. H. Pereira and J. F. Jesus, “Can dark matter decay in dark energy?,” Phys. Rev. D, 79, 043517 (2009).ADSCrossRefGoogle Scholar
  77. 75.
    R.-G. Cai, Z.-L. Tuo, Y.-B. Wu, and Y.-Y. Zhao, “More on QCD ghost dark energy,” Phys. Rev. D, 86, 023511 (2012).ADSCrossRefGoogle Scholar
  78. 76.
    A. Sheykhi and M. Sadegh Movahed, “Interacting ghost dark energy in non-flat universe,” Gen. Rel. Grav., 44, 449–465 (2012).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 77.
    R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J., 573, 37–42 (2002).ADSCrossRefGoogle Scholar
  80. 78.
    T. M. Davis et al., “Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes,” Astrophys. J., 666, 716–725 (2007).ADSCrossRefGoogle Scholar
  81. 79.
    E. Komatsu et al., “Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation,” Astrophys. J. Suppl., 180, 330–376 (2009).ADSCrossRefGoogle Scholar
  82. 80.
    P. A. R. Ade et al. [Planck Collab.], “Planck 2013 results: XVI. Cosmological parameters,” Astron. Astrophys., 571, A16 (2014); arXiv:1303.5076v3 [astro-ph.CO] (2013).Google Scholar
  83. 81.
    W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope, and A. S. Szalay, “Measuring the baryon acoustic oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey,” Monthly Notices Roy. Astron. Soc., 381, 1053–1066 (2007).ADSCrossRefGoogle Scholar
  84. 82.
    A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R. Chornock, and D. Sarkar, “A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder,” Astrophys. J., 699, 539–563 (2009).ADSCrossRefGoogle Scholar
  85. 83.
    Y.-S. Song and W. J. Percival, “Reconstructing the history of structure formation using redshift distortions,” J. Cosmol. Astropart. Phys., 10, 004 (2009).ADSCrossRefGoogle Scholar
  86. 84.
    A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, “A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3,” Astrophys. J., 730, 119 (2011).ADSCrossRefGoogle Scholar
  87. 85.
    G. Chen, J. R. Gott III, and B. Ratra, “Non-Gaussian error distribution of Hubble constant measurements,” Publ. Astron. Soc. Pac., 115, 1269–1279 (2003); arXiv:astro-ph/0308099v1 (2003).ADSCrossRefGoogle Scholar
  88. 86.
    J. R. Gott III, M. S. Vogeley, S. Podariu, and B. Ratra, “Median statistics, H0, and the accelerating universe,” Astrophys. J., 549, 1–17 (2001).ADSCrossRefGoogle Scholar
  89. 87.
    M. Li, X.-D. Li, S. Wang, and X. Zhang, “Holographic dark energy models: A comparison from the latest observational data,” J. Cosmol. Astropart. Phys., 06, 036 (2009).ADSCrossRefGoogle Scholar
  90. 88.
    J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D, 71, 123001 (2005).ADSCrossRefGoogle Scholar
  91. 89.
    C. Blake et al., “The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1,” Monthly Notices Roy. Astron. Soc., 425, 405–414 (2012).ADSCrossRefGoogle Scholar
  92. 90.
    Y.-L. Li, S.-Y. Li, T.-J. Zhang, and T.-P. Li, “Model-independent determination of curvature parameter using H(z) and DA(z) data pairs from BAO measurements,” Astrophys. J. Lett., 789, L15 (2014).ADSCrossRefGoogle Scholar
  93. 91.
    P. K. Aluri, S. Panda, M. Sharma, and S. Thakur, “Anisotropic universe with anisotropic sources,” J. Cosmol. Astropart. Phys., 12, 003 (2013).ADSCrossRefGoogle Scholar
  94. 92.
    F. Pace, J. C. Waizmann, and M. Bartelmann, “Spherical collapse model in dark-energy cosmologies,” Monthly Notices Roy. Astron. Soc., 406, 1865–1874 (2010).ADSGoogle Scholar
  95. 93.
    F. Pace, L. Moscardini, R. Crittenden, M. Bartelmann, and V. Pettorino, “A comparison of structure formation in minimally and non-minimally coupled quintessence models,” Monthly Notices Roy. Astron. Soc., 437, 547–561 (2014).ADSCrossRefGoogle Scholar
  96. 94.
    W. J. Percival, “Cosmological structure formation in a homogeneous dark energy background,” Astron. Astrophys., 443, 819–830 (2005).ADSCrossRefGoogle Scholar
  97. 95.
    O. Bertolami, R. Lehnert, R. Pottin, and A. Ribeiro, “Cosmological acceleration, varying couplings, and Lorentz breaking,” Phys. Rev. D, 69, 083513 (2004).ADSCrossRefGoogle Scholar
  98. 96.
    I. Ya. Aref’eva, N. V. Bulatov, and S. Yu. Vernov, “Stable exact solutions in cosmological models with two scalar fields,” Theor. Math. Phys., 163, 788–803 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  99. 97.
    I. Ya. Aref’eva, N. V. Bulatov, L. V. Joukovskaya, and S. Yu. Vernov, “Null energy condition violation and classical stability in the Bianchi I metric,” Phys. Rev. D, 80, 083532 (2009).ADSMathSciNetCrossRefGoogle Scholar
  100. 98.
    I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, “Crossing the w= − 1 barrier in the D3-brane dark energy model,” Phys. Rev. D, 72, 064017 (2005).ADSCrossRefGoogle Scholar
  101. 99.
    P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field,” Phys. Rev. D, 58, 023503 (1998)ADSCrossRefGoogle Scholar
  102. 99a.
    E. J. Copeland, A. R. Liddle, and D. Wands, “Exponential potentials and cosmological scaling solutions,” Phys. Rev. D, 57, 4686–4690 (1998).ADSCrossRefGoogle Scholar
  103. 100.
    M. R. Setare and E. C. Vagenas, “The cosmological dynamics of interacting holographic dark energy model,” Internat. J. Modern Phys. D, 18, 147–157 (2009).ADSzbMATHCrossRefGoogle Scholar
  104. 101.
    D. Iakubovskyi and Y. Shtanov, “Braneworld cosmological solutions and their stability,” Class. Q. Grav., 22, 2415–2432 (2005).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. 102.
    Y. S. Myung, “Instability of holographic dark energy models,” Phys. Lett. B, 652, 223–227 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. 102a.
    K. Y. Kim, H. W. Lee, and Y. S. Myung, “Instability of agegraphic dark energy models,” Phys. Lett. B, 660, 118–124 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • H. Hossienkhani
    • 1
  • V. Fayaz
    • 1
  • S. A. A. Terohid
    • 1
  • N. Azimi
    • 2
  • Z. Zarei
    • 1
  • M. Ganji
    • 1
  1. 1.Department of Physics, Hamedan BranchIslamic Azad UniversityHamedanIran
  2. 2.Department of Mathematics, Hamedan BranchIslamic Azad UniversityHamedanIran

Personalised recommendations