Skip to main content
Log in

Spin-One p-Spin Glass: Exact Solution for Large p

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the low-temperature properties of the p-spin spin glass model in the spin-one (three-state) case for large values of p. We show that the one-step replica symmetry-breaking phase is unstable at a very low temperature, and we calculate the explicit boundary of the stability interval, the Gardner temperature, analytically for large values of p. This temperature for the spin-one model has the same form of dependence on p as in the case of Ising spins (two states). In the one-step replica symmetrybreaking state, a quadrupolar orientational glass coexists with the spin glass and also with a regular quadrupole ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Gross and M. Mezard, “The simplest spin glass,” Nucl. Phys. B, 240, 431–452 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Gardner, “Spin glasses with p-spin interactions,” Nucl. Phys. B, 257, 747–765 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,” Phys. Rev. Lett., 35, 1792–1796 (1975)

    Article  ADS  Google Scholar 

  4. S. Kirkpatrick and D. Sherrington, “Infinite-ranged models of spin-glasses,” Phys. Rev. B, 17, 4384–4403 (1978).

    Article  ADS  Google Scholar 

  5. A. Crisanti and H.-J. Sommers, “The spherical p-spin interaction spin glass model: The statics,” Z. Phys. B Condens. Matter, 87, 341–354 (1992).

    Article  ADS  Google Scholar 

  6. T. R. Kirkpatrick and P. G. Wolynes, “Connection between some kinetic and equilibrium theories of the glass transition,” Phys. Rev. A, 35, 3072–3080 (1987).

    Article  ADS  Google Scholar 

  7. T. R. Kirkpatrick and P. G. Wolynes, “Stable and metastable states in mean-field Potts and structural glasses,” Phys. Rev. B, 36, 8552–8564 (1987).

    Article  ADS  Google Scholar 

  8. T. R. Kirkpatrick and D. Thirumalai, “Dynamics of the structural glass transition and the p-spin-interaction spin-glass model,” Phys. Rev. Lett., 58, 2091–2094 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, “Scaling concepts for the dynamics of viscous liquids near an ideal glassy state,” Phys. Rev. A, 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  10. G. Parisi and F. Zamponi, “Mean field theory of hard sphere glasses and jamming,” Rev. Modern Phys., 82, 789–845 (2010).

    Article  ADS  Google Scholar 

  11. P. G. Wolynes and V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, Hoboken, N. J., Wiley (2012).

    Book  Google Scholar 

  12. L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and amorphous materials,” Rev. Modern Phys., 83, 587–645 (2011).

    Article  ADS  Google Scholar 

  13. J. Kourchan, G. Parisi, P. Urbani, and F. Zamponi, “Exact theory of dense amorphous hard spheres in high dimension: II. The high density regime and the Gardner transition,” J. Phys. Chem. B, 117, 12979–12994 (2013).

    Article  Google Scholar 

  14. P. Charbonneau, J. Kourchan, G. Parisi, P. Urbani, and F. Zamponi, “Fractal free energy landscapes in structural glasses,” Nat. Commun., 5, 3725 (2014).

    Article  ADS  Google Scholar 

  15. P. Charbonneau, Y. Jin, G. Parisi, C. Rainone, B. Seoane, and F. Zamponi, “Numerical detection of the Gardner transition in a mean-field glass former,” Phys. Rev. E, 92, 012316 (2015).

    Article  ADS  Google Scholar 

  16. P. Charbonneau, J. Kourchan, G. Parisi, P. Urbani, and F. Zamponi, “Exact theory of dense amorphous hard spheres in high dimension: III. The full replica symmetry breaking solution,” J. Stat. Mech. Theor. Exp., 2014, P10009 (2014).

    Article  MathSciNet  Google Scholar 

  17. C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi, “Following the evolution of glassy states under external perturbations: Compression and shear-strain,” Phys. Rev. Lett., 114, 015701 (2015).

    Article  ADS  Google Scholar 

  18. P. Urbani and G. Biroli, “Gardner transition in finite dimensions,” Phys. Rev. B, 91, 100202 (2015).

    Article  ADS  Google Scholar 

  19. A. Montanari and F. Ricci-Tersenghi, “On the nature of the low-temperature phase in discontinuous mean-field spin glasses,” Eur. Phys. J. B, 33, 339–346 (2003).

    Article  ADS  Google Scholar 

  20. A. Montanari and F. Ricci-Tersenghi, “Cooling-schedule dependence of the dynamics of mean-field glasses,” Phys. Rev. B, 70, 134406 (2004).

    Article  ADS  Google Scholar 

  21. T. Rizzo, “Replica-symmetry-breaking transitions and off-equilibrium dynamics,” Phys. Rev. E, 88, 032135 (2013).

    Article  ADS  Google Scholar 

  22. D. J. Gross, I. Kanter, and H. Sompolinsky, “Mean-field theory of the Potts glass,” Phys. Rev. Lett., 55, 304–307 (1985).

    Article  ADS  Google Scholar 

  23. N. V. Gribova, V. N. Ryzhov, and E. E. Tareyeva, “Low-temperature phase transition in the three-state Potts glass,” Phys. Rev. E, 68, 067103 (2003).

    Article  ADS  Google Scholar 

  24. T. I. Schelkacheva and N. M. Chtchelkatchev, “Replica analysis of the generalized p-spin interaction glass model,” J. Phys. A: Math. Theor., 44, 445004 (2011).

    Article  ADS  MATH  Google Scholar 

  25. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, “Full versus first-stage replica symmetry breaking in spin glasses,” Phys. Rev. B, 82, 134208 (2010).

    Article  ADS  Google Scholar 

  26. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, “Pressure-induced orientational glass phase in molecular para-hydrogen,” Phys. Rev. E, 79, 021105 (2009).

    Article  ADS  Google Scholar 

  27. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, “Continuous and discontinuous transitions in generalized p-spin glass models,” J. Phys. A: Math. Theor., 47, 075002 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T. I. Schelkacheva, E. E. Tareyeva, and N. M. Chtchelkatchev, “Generalized Sherrington–Kirkpatrick glass without reflection symmetry,” Phys. Rev. E, 89, 042149 (2014).

    Article  ADS  Google Scholar 

  29. E. E. Tareyeva, T. I. Schelkacheva, and N. M. Chtchelkatchev, “Some peculiarities in the behavior of non-Ising spin glasses,” Theor. Math. Phys., 182, 437–447 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Mottishaw, “First-order spin-glass transitions: An exact solution,” Europhys. Lett., 1, 409–414 (1986).

    Article  ADS  Google Scholar 

  31. J. M. de Ara´ujo, F. A. da Costa, and F. D. Nobre, “First-order transitions and triple point on a random p-spin interaction model,” J. Phys. A: Math. Gen., 33, 1987 (2000).

    Article  ADS  MATH  Google Scholar 

  32. E. A. Luchinskaya and E. E. Tareeva, “Spin glass with S = 1,” Theor. Math. Phys., 90, 185–188 (1992).

    Article  MathSciNet  Google Scholar 

  33. G. Parisi, “A sequence of approximated solutions to the S–K model for spin glasses,” J. Phys. A: Math. Gen., 13, L115–L121 (1980).

    Article  ADS  Google Scholar 

  34. J. R. L. Almeida and D. J. Thouless, “Stability of the Sherrington–Kirkpatrick solution of a spin glass model,” J. Phys. A, 11, 983–990 (1978).

    Article  ADS  Google Scholar 

  35. N. N. Bogoliubov, “Quasiaverage in problems of statistical mechanics,” in: Collection of Scientific Works in Twelve Volumes: Statistical Mechanics [in Russian], Vol. 6, Equilibrium Statistical Mechanics, 1945–1986, Nauka, Moscow (2006), pp. 236–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tareyeva.

Additional information

† Deceased.

The research of T. I. Schelkacheva (Sec. 2) was supported by the Russian Foundation for Basic Research (Grant No. 17-02-00320).

The research of E. E. Tareyeva (Secs. 3 and 4) was supported by a grant from the Russian Science Foundation (Project No. 14-22-00093).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 194, No. 1, pp. 295–303, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tareyeva, E.E., Schelkacheva, T.I. Spin-One p-Spin Glass: Exact Solution for Large p. Theor Math Phys 194, 252–259 (2018). https://doi.org/10.1134/S0040577918020058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918020058

Keywords

Navigation