Skip to main content
Log in

Phase Space of Collective Variables and the Zubarev Transition Function

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the completeness of the transition function J(ρ − \(\hat \rho \)) to the infinite set of collective variables {ρk}. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Zubarev, “Computation of configuration integrals for a system of particles with Coulomb interaction [in Russian],” Dokl. AN SSSR, 95, 757–760 (1954).

    Google Scholar 

  2. D. Bohm and D. Pines, “A collective description of electron interactions: I. Magnetic interactions,” Phys. Rev., 82, 625–634 (1951); “A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev., 85, 338–353 (1952); “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas,” Phys. Rev., 92, 609–625 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. J. Yevic and J. K. Perkus, “New approach to the many-body problem,” Phys. Rev., 101, 1186–1191 (1956); “Dynamical considerations on a new approach to the many-body problem,” Phys. Rev., 101, 1192–1197 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett., 3, 77–78 (1959); “The description of collective motions in terms of many-body perturbation theory,” Proc. Roy. Soc. A, 240, 539–560 (1957).

    Article  ADS  Google Scholar 

  5. R. L. Stratonovic, “On a method of calculating quantum distribution functions,” Sov. Phys. Dokl., 2, 416–419 (1958).

    ADS  Google Scholar 

  6. I. R. Yukhnovskii, “Use of collective variables and treatment of short-range forces in the theory of a system of charged particles,” Sov. JETP, 7, 263–270.

  7. I. R. Yukhnovskii, “The quantum partition function and collective variables: II. Transition function to collective variables [in Ukrainian],” Ukr. Fiz. Zhurn., 9, 827–838 (1964).

    Google Scholar 

  8. I. R. Yukhnovskii and M. K. Ostrovskii, “The properties of the transition functions to the collective variables [in Ukrainian],” Vestn. L’vov. Un-ta. Ser. Fiz., 5, No. 13, 3–11 (1969).

    Google Scholar 

  9. I. R. Yukhnovskii, “On the statistical theory of ionic systems [in Russian],” Ukr. Fiz. Zhurn., 4, 167–176 (1959).

    Google Scholar 

  10. I. R. Yukhnovskii, “On the statistical theory of mixed ion-dipole systems of interacting particles [in Russian],” Dokl. AN SSSR, 136, 1317–1320 (1961).

    Google Scholar 

  11. I. R. Yukhnovskii, “To statistical theories of systems of interacting ions and dipole particles [in Ukrainian],” Ukr. Fiz. Zhurn., 6, 333–339 (1961).

    Google Scholar 

  12. A. A. Nekrot, “Method of angular collective variables for calculating the partition function of a variable ion–dipole system: I. The classical case [in Ukrainian],” Ukr. Fiz. Zhurn., 8, 560–567 (1963).

    Google Scholar 

  13. I. R. Yukhnovskii and A. A. Nekrot, “Virial expansion for plasma in the method of collective variables [in Russian],” Ukr. Fiz. Zhurn., 11, 363–371 (1966).

    Google Scholar 

  14. I. R. Yukhnovskii and M. F. Golovko, “Statistical theory of equilibrium systems of particles of complex electrostatic structure [in Russian],” Ukr. Fiz. Zhurn., 14, 1116–1129 (1969).

    Google Scholar 

  15. I. R. Yukhnovskii, V. S. Vysochanskii, and M. F. Golovko, “Investigation of group expansions for binary distribution functions of systems of particles with an electrostatic interaction: I. Third virial coefficient [in Russian],” Preprint ITF-72-IP, Inst. Theor. Phys., Kiev (1972); “Binary distribution functions of ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 18, 66–74 (1973); “Toward the study of binary distribution functions of ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 18, 1842–1847 (1973).

    Google Scholar 

  16. V. S. Vysochanskii, “‘Dipole–dipole’ distribution functions in mixed ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 22, 209–212 (1977).

    Google Scholar 

  17. I. R. Yukhnovskii, V. D. Gruba, M. F. Golovko, and Yu. M. Kessler, “A study of the dependence of mediumstrength interionic interaction potentials on the parameters and form of the ion–molecular and intermolecular interaction potentials [in Russian],” Ukr. Fiz. Zhurn., 25, 1761–1765 (1980).

    Google Scholar 

  18. I. R. Yukhnovskii, M. F. Golovko, and A. V. Popov, “Exact account for dipole orientations in calculating binary distribution functions of a mixed ion–dipole system [in Russian],” Ukr. Fiz. Zhurn., 25, 762–770 (1980).

    Google Scholar 

  19. I. I. Kurylyak and I. R. Yukhnovskii, “The method of collective variables in the equilibrium statistical theory of bounded systems of charged particles: I. Continuum model of an electrolyte solution occupying a half-space,” Theor. Math. Phys., 52, 691–699 (1982).

    Article  Google Scholar 

  20. M. F. Golovko, I. I. Kurylyak, O. A. Pizio, and E. N. Sov’yak, “On the basis account for interactions in the statistical theory of ion–molecular systems [in Russian],” in: Problems of Modern Statistical Physics (N. N. Bogoliubov, ed.), Naukova Dumka, Kiev (1985), pp. 82–96.

    Google Scholar 

  21. I. R. Yukhnovskii, “Separation of the reference system in a collective variable method [in Russian],” Preprint ITP-74-149P, Inst. Theor. Phys., Kiev (1974).

    Google Scholar 

  22. M. F. Golovko and O. A. Pizio, “Basis account for short-range interactions in the theory of ionic systems [in Russian],” Ukr. Fiz. Zhurn., 21, 653–662 (1976).

    Google Scholar 

  23. I. R. Yukhnovskii and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  24. L. Blum and D. Q. Wei, “Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent,” J. Chem. Phys., 87, 555–565 (1987)

    Article  ADS  Google Scholar 

  25. D. Q. Wei and L. Blum, “The mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics,”, 87, 2999–3007 (1987).

    Google Scholar 

  26. M. F. Golovko and I. A. Protsykevich, “Pair correlation functions for the asymmetric ion–dipole model in the mean spherical approximation,” Chem. Phys. Lett., 142, 463–468 (1987).

    Article  ADS  Google Scholar 

  27. M. F. Golovko and I. A. Protsykevich, “Analytic solution of the mean spherical approximation for ion–dipole model in a neutralizing background,” J. Statist. Phys., 54, 707–733 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Wertheim, “Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments,” J. Chem. Phys., 55, 4291–4298 (1971).

    Article  ADS  Google Scholar 

  29. M. F. Holovko and V. Kapko, “Ion association phenomena and static dielectric properties in electrolyte solutions: Application of the effective mean spherical approximation–mass action law approach,” Acta Chim. Slov., 56, 203–208 (2009).

    Google Scholar 

  30. I. R. Yukhnovskii and Yu. K. Rudavskii, “Substantiation of the form of the basis distribution near the phase transition point in the Ising model [in Russian],” Dokl. AN SSSR, 236, 579–582 (1977).

    Google Scholar 

  31. I. R. Yukhnovskii, “Integration of the partition function of the three-dimensional Ising model in the collective variable method [in Russian],” Preprint ITP-76-24P, Inst. Theor. Phys., Kiev (1976); Ukr. Fiz. Zhurn., 22, 323–335, 382–392 (1977); “Partition function of the three-dimensional Ising model [in Russian],” Dokl. AN SSSR, 232, 312-315 (1977); “Partition function of the three-dimensional Ising model,” Theor. Math. Phys., 36, 798–815 (1978).

    Google Scholar 

  32. I. R. Yukhnovskii, Phase Transition of the Second Order: Collective Variables Method [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  33. I. R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters,” Phys. Rev. B, 66, 134410 (2002).

    Article  ADS  Google Scholar 

  34. M. P. Kozlovskii, I. V. Pylyuk, and O. O. Prytula, “Microscopic description of the critical behavior of threedimensional Ising-like systems in an external field,” Phys. Rev. B., 73, 174406 (2006).

    Article  ADS  Google Scholar 

  35. I. R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, Microscopic Theory of Phase Transitions in Three-Dimensional Systems, Evrosvit, L’vov (2001).

    MATH  Google Scholar 

  36. L. P. Kadanoff, “Scaling laws for Ising models near Tc,” Physics, 2, 263–272 (1966).

    Article  Google Scholar 

  37. K. G. Wilson, “Renormalization group and critical phenomena: I. Renormalization group and the Kadanoff scaling picture,” Phys. Rev. B., 4, 3174–3183 (1971); “Renormalization group and critical phenomena: II. Phasespace cell analysis of critical behavior,” Phys. Rev. B., 4, 3184–3205 (1971).

    Article  ADS  MATH  Google Scholar 

  38. K. G. Wilson and J. Kogut, The Renormalization Group and the Epsilon Expansion, North-Holland, Amsterdam (1974).

    Google Scholar 

  39. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  40. R. Braut, Phase Transitions, Benjamin, New York (1963).

    Google Scholar 

  41. I. M. Idzik, V. A. Kolomiets, and I. R. Yukhnovskii, “Liquid–gas critical point in the method of collective variables,” Theor. Math. Phys., 73, 1204–1217 (1987).

    Article  Google Scholar 

  42. L. D. Landau, Collected Papers [in Russian], Nauka, Moscow (1969); English transl., Pergamon, Oxford (1979).

    Google Scholar 

  43. I. R. Yukhnovskii, “Method of collective variables with references system for the grand canonical ensemble,” Theor. Math. Phys., 79, 536–546 (1989).

    Article  MathSciNet  Google Scholar 

  44. I. R. Yukhnovskii, “The grand partition function in the method of collective variables and its application to the investigation of the liquid–gas phase transition,” Proc. Steklov Inst. Math., 191, 223–243 (1992).

    Google Scholar 

  45. I. R. Yukhnovskii, I. M. Idzyk, and V. O. Kolomiets, “Investigation of a homogeneous many-particle system in the vicinity of the critical point,” J. Stat. Phys., 80, 405–443 (1995).

    Article  ADS  MATH  Google Scholar 

  46. I. R. Yukhnovskii, “The phase transition of the first order in the critical region of the gas–liquid system,” Condens. Matter Phys., 17, 43001 (2014); arXiv:1501.02325v1 [cond-mat.stat-mech] (2015).

    Article  Google Scholar 

  47. V. I. Kalikmanov, J. Wolk, and T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment,” J. Chem. Phys., 128, 124506 (2008).

    Article  ADS  Google Scholar 

  48. A. Fladerer and R. Strey, “Homogeneous nucleation and droplet growth in supersaturated argon vapor: The cryogenic nucleation pulse chamber,” J. Chem. Phys., 124, 164710 (2006).

    Article  ADS  Google Scholar 

  49. J. D. van der Waals, “On the continuity of the gaseous and liquid states [in Dutch],” Doctoral dissertation, Univ. of Leiden, Leiden (1873); English transl.: On the Continuity of the Gaseous and Liquid States (Stud. Stat. Mech., Vol. 14, J. S. Rowlinson, ed.), North Holland, Amsterdam (1988).

    Google Scholar 

  50. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    Google Scholar 

  51. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, [in Russian], Vol. 5, Statistical Physics: Part 1, Nauka, Moscow (1976); English transl., Pergamon, Oxford (1980).

    Google Scholar 

  52. G. A. Martynov, “The problem of phase transitions in statistical mechanics,” Phys. Usp., 42, 517–543 (1999).

    Article  ADS  Google Scholar 

  53. Yu. L. Klimontovich, “Vapor–liquid phase transition: The Van der Waals model,” Theor. Math. Phys., 115, 707–722 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  54. A. S. Bakai, “Heterophase liquid states: Thermodynamics, structure, dynamics,” Condens. Matter Phys., 17, 43701 (2014).

    Article  Google Scholar 

  55. I. R. Yukhnovskii, “Phase transitions in the vicinity of the gas–liquid critical point,” Ukr. J. Phys. Reviews, 10, 33–97 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Yukhnovskii.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 194, No. 1, pp. 224–258, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukhnovskii, I.R. Phase Space of Collective Variables and the Zubarev Transition Function. Theor Math Phys 194, 189–219 (2018). https://doi.org/10.1134/S0040577918020022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918020022

Keywords

Navigation