Skip to main content
Log in

Holographic control of information and dynamical topology change for composite open quantum systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems, Springer, Dordrecht, (2011).

    Book  MATH  Google Scholar 

  2. I. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv:1603.09107v2 [hep-th] (2016).

    Google Scholar 

  3. M. Mohseni, Y. Omar, G. S. Engel, and M. B. Plenio, eds., Quantum Effects in Biology, Cambridge Univ. Press, Cambridge (2014).

    Book  Google Scholar 

  4. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory, and gravity,” Phys. Rep., 323, 183–386 (2000); arXiv:hep-th/9905111v3 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. I. Ya. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp., 57, 527–555 (2014).

    Article  Google Scholar 

  6. I. Y. Aref’eva, “QGP time formmation in holographic shock waves model of heavy ion collisions,” Theor. Math. Phys., 184, 1239–1256 (2015); arXiv:1503.02185v1 [hep-th] (2015).

    Article  MATH  Google Scholar 

  7. D. S. Ageev and I. Ya. Aref’eva, “Waking and scrambling in holographic heating up,” Theor. Math. Phys., 193, 1534-1546.

  8. D. S. Ageev and I. Y. Aref’eva, “Memory loss in holographic non-equilibrium heating,” arXiv:1704.07747v1 [hep-th] (2017).

    Google Scholar 

  9. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Ya. Aref’eva and M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics,” JHEP, 1604, 121 (2016).

    ADS  MathSciNet  Google Scholar 

  11. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” EPL, 113, 30005 (2016).

    Article  Google Scholar 

  12. I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A, 380, 56–58 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. Y. Aref’eva, M. A. Khramtsov, and M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench,” JHEP, 2017, 115 (1709); arXiv:1706.07390v3 [hep-th] (2017).

    Article  Google Scholar 

  14. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, “Holographic thermalization,” Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  15. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence,” Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic entanglement entropy proposal,” JHEP, 0707, 062 (2007); arXiv:0705.0016v3 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. E. Hubeny, M. Rangamani, and E. Tonni, “Thermalization of causal holographic information,” JHEP, 1305, 136 (2013); arXiv:1302.0853v3 [hep-th] (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Alishahiha, M. R. M. Mozaffar, and M. R. Tanhayi, “On the time evolution of holographic n-partite information,” JHEP, 1509, 165 (2015); arXiv:1406.7677v4 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Ben-Ami, D. Carmi, and J. Sonnenschein, “Holographic entanglement entropy of multiple strips,” JHEP, 1411, 144 (2014); arXiv:1409.6305v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’ eva.

Additional information

This research is supported by a grant from the Russian Science Foundation (Project No. 17-71-20154).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 193, No. 3, pp. 493–504, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’ eva, I.Y., Volovich, I.V. & Inozemcev, O.V. Holographic control of information and dynamical topology change for composite open quantum systems. Theor Math Phys 193, 1834–1843 (2017). https://doi.org/10.1134/S0040577917120091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917120091

Keywords

Navigation