Skip to main content
Log in

New information-entropic relations for Clebsch–Gordan coefficients

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using properties of the Shannon and Tsallis entropies, we obtain new inequalities for the Clebsch–Gordan coefficients of the group SU(2). For this, we use squares of the Clebsch–Gordan coefficients as probability distributions. The obtained relations are new characteristics of correlations in a quantum system of two spins. We also find new inequalities for Hahn polynomials and the hypergeometric functions 3F2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Application (Encycl. Math. Its Appl., Vol. 8), Addison–Wesley, Reading, Mass. (1981).

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-relativistic Theory, Fizmatlit, Moscow (2004); English transl. prev. ed., Pergamon, Oxford (1977).

    Google Scholar 

  3. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, N. J. (1958).

    MATH  Google Scholar 

  4. N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions: Recent Advances (Math. Its Appl., Vol. 316), Kluwer, Dordrecht (1995).

    Book  MATH  Google Scholar 

  5. E. P. Wigner, “On the matrices which reduce the Kronecker products of representations of S. R. groups,” in: The Collected Works of Eugene Paul Wigner: Part A. The Scientific Papers (A. S. Wightman, eds.), Springer, Berlin (1993), pp. 608–654.

    Chapter  Google Scholar 

  6. Yu. F. Smirnov, S. K. Suslov, and J. M. Shirokov, “Clebsch–Gordan coefficients and Racah coefficients for the SU(2) and SU(1, 1) groups as the discrete analogs of the Pöschl–Teller potential wavefunctions,” J. Phys. A: Math. Gen., 17, 2157–2175 (1984).

    Article  ADS  MATH  Google Scholar 

  7. Ya. A. Smorodinskii and L. A. Shelepin, “Clebsch–Gordan coefficients, viewed from different sides,” Sov. Phys. Usp., 15, 1–24 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  8. Z. Plunar, Yu. F. Smirnov, and V. N. Tolstoy, “Clebsch–Gordan coefficients of SU(3) with simple symmetry properties,” J. Phys. A: Math. Gen., 19, 21–28 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Hahn, “Über orthogonalpolynome, die q-differenzengleichungen genügen,” Math. Nachr., 2, 4–34 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Bateman, Higher Transcendental Functions (Compiled A. Erdélyi), Vols. 1 and 2, McGraw-Hill, New York (1953).

    Google Scholar 

  11. S. Karlin and J. R. McGregor, “The Hahn polynomials, formulas, and applications,” Scr. Math., 26, 33–46 (1961).

    MathSciNet  MATH  Google Scholar 

  12. V. N. Chernega and O. V. Man’ko, “No signaling and strong subadditivity condition for tomographic q-entropy of single qudit states,” Phys. Scr., 90, 074052 (2015).

    Article  ADS  Google Scholar 

  13. M. A. Man’ko and V. I. Man’ko, “No-signaling property of the single-qudit-state tomogram,” J. Russ. Laser Res., 35, 582–589 (2014).

    Article  Google Scholar 

  14. V. N. Chernega and O. V. Man’ko, “Tomographic and improved subadditivity conditions for two qubits and a qudit with j = 3/2,” J. Russ. Laser Res., 35, 27–38 (2014).

    Article  Google Scholar 

  15. M. A. Man’ko and V. I. Man’ko, “The quantum strong subadditivity condition for systems without subsystems,” Phys. Scr., 2014, No. T160, 014030 (2014).

    Article  Google Scholar 

  16. V. N. Chernega, O. V. Manko, and V. I. Manko, “New inequality for density matrices of single qudit states,” J. Russ. Laser Res., 35, 457–461 (2014).

    Article  Google Scholar 

  17. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland Series Stat. Prob., Vol. 1), North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  18. L. E. Vicent and K. B. Wolf, “Unitary transformation between Cartesian- and polar-pixellated screens,” J. Opt. Soc. Am. A, 25, 1875–1884 (2008).

    Article  ADS  Google Scholar 

  19. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985); English transl., Springer, Berlin (1991).

    MATH  Google Scholar 

  20. R. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoy, “On a general analytic formula for Uq(su(3)) Clebsch–Gordan coefficients,” Phys. Atom. Nucl., 64, 2080–2085 (2001).

    Article  ADS  Google Scholar 

  21. V. I. Man’ko and O. V. Man’ko, “Spin state tomography,” JETP, 85, 430–434 (1997).

    Article  ADS  MATH  Google Scholar 

  22. V. V. Dodonov and V. I. Man’ko, “Positive distribution description for spin states,” Phys. Lett. A, 229, 335–339 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. O. Casta˜nos, R. López-Pe˜na, M. A. Man’ko, and V. I. Man’ko, “Kernel of star-product for spin tomograms,” J. Phys. A: Math. Gen., 36, 4677–4688 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. C. E. Shannon, “A mathematical theory of communication,” Bell System Tech. J., 27, 379–423, 623–656 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Araki and E. H. Lieb, “Entropy inequalities,” Commun. Math. Phys., 18, 160–170 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Tsallis, “Nonextensive statistical mechanics and thermodynamics: Historical background and present status,” in: Nonextensive Generalization of Boltzmann–Gibbs Statistical Mechanics and Its Applications (Lect. Notes Phys., Vol. 560, S. Abe and Y. Okamoto, eds.), Springer, Berlin (2001), pp. 3–98.

    Chapter  Google Scholar 

  27. N. M. Atakishiyev and S. K. Suslov, “The Hahn and Meixner polynomials of an imaginary argument and some of their applications,” J. Phys. A: Math. Gen., 18, 1583–1596 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Chernega.

Additional information

The research of V. I. Manko was supported by the Tomsk State University Competitiveness Improvement Program.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 193, No. 2, pp. 356–366, November, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernega, V.N., Manko, O.V., Manko, V.I. et al. New information-entropic relations for Clebsch–Gordan coefficients. Theor Math Phys 193, 1715–1724 (2017). https://doi.org/10.1134/S0040577917110113

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917110113

Keywords

Navigation