Skip to main content
Log in

Vacuum effects for a one-dimensional “hydrogen atom” with Z > Zcr

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a supercritical Coulomb source with a chargeZ > Zcr in 1+1 dimensions, we study the nonperturbative properties of the vacuum density ρVP(x) and the energy ɛVP. We show that for corresponding problem parameters, nonlinear effects in the supercritical region can lead to behavior of the vacuum energy differing significantly from the perturbative quadratic growth, to the extent of an (almost) quadratic decrease of the form −|η|Z2 into the negative region. We also show that although approaches for calculating vacuum expectations values and the behavior of ρVP(x) in the supercritical region for various numbers of spatial dimensions indeed have many common features, ɛVP for 1+1 dimensions in the supercritical region nevertheless has several specific features determined by the one-dimensionality of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Loudon, “One-dimensional hydrogen atom,” Am. J. Phys., 27, 649–655 (1959).

    Article  ADS  Google Scholar 

  2. R. J. Elliott and R. Loudon, “Theory of the absorption edge in semiconductors in a high magnetic field,” J. Phys. Chem. Solids, 15, 196–207 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C. M. Care, “One dimensional hydrogen atom with a repulsive core,” J. Phys. C: Solid State Phys., 5, 1799–1805 (1972).

    Article  ADS  Google Scholar 

  4. M. W. Cole, “Properties of image-potential-induced surface states of insulators,” Phys. Rev. B, 2, 4239–4252 (1970).

    Article  ADS  Google Scholar 

  5. M. M. Nieto, “Electrons above a helium surface and the one-dimensional Rydberg atom,” Phys. Rev. A, 61, 034901 (2000).

    Article  ADS  Google Scholar 

  6. N. B. Delone, B. P. Krainov, and D. L. Shepelyanskii, “Highly-excited atoms in the electromagnetic field,” Soviet Phys. Uspekhi, 26, 551–572 (1983).

    Article  ADS  Google Scholar 

  7. R. V. Jensen, S. M. Susskind, and M. M. Sanders, “Chaotic ionization of highly excited hydrogen atoms: Comparison of classical and quantum theory with experiment,” Phys. Rep., 201, 1–56 (1991).

    Article  ADS  Google Scholar 

  8. U.-L. Pen and T. F. Jiang, “Strong-field effects of the one-dimensional hydrogen atom in momentum space,” Phys. Rev. A, 46, 4297–4305 (1992).

    Article  ADS  Google Scholar 

  9. A. López-Castillo and C. R. de Oliveira, “Classical ionization for the aperiodic driven hydrogen atom,” Chaos, Solitons, Fractals, 15, 859–869 (2003).

    Article  ADS  MATH  Google Scholar 

  10. F. H. L. Essler, F. Gebhard, and E. Jeckelmann, “Excitons in one-dimensional Mott insulators,” Phys. Rev. B, 64, 125119 (2001).

    Article  ADS  Google Scholar 

  11. F. Wang, Y. Wu, M. S. Hybertsen, and T. F. Heinz, “Auger recombination of excitons in one-dimensional systems,” Phys. Rev. B, 73, 245424 (2006).

    Article  ADS  Google Scholar 

  12. V. Canuto and D. C. Kelly, “Hydrogen atom in intense magnetic field,” Astrophys. Space Sci., 17, 277–291 (1972).

    Article  ADS  Google Scholar 

  13. H. Friedrich and H. Wintgen, “The hydrogen atom in a uniform magnetic field–an example of chaos,” Phys. Rep., 183, 37–79 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  14. X. Guan, B. Li, and K. T. Taylor, “Strong parallel magnetic field effects on the hydrogen molecular ion,” J. Phys. B, 36, 3569–3590 (2003).

    Article  ADS  Google Scholar 

  15. H. Ruder, G. Wunner, H. Herold, and F. Geyer, Atoms in Strong Magnetic Fields: Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos, Springer, Berlin (2012).

    Google Scholar 

  16. R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment,” Nucl. Phys. A, 161, 1–11 (1971).

    Article  ADS  Google Scholar 

  17. V. P. Krainov, “A hydrogen-like atom in a superstrong magnetic field,” Soviet JETP, 37, 406–407 (1973).

    ADS  Google Scholar 

  18. A. E. Shabad and V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED,” Phys. Rev. Lett., 96, 180401 (2006).

    Article  ADS  Google Scholar 

  19. A. E. Shabad and V. V. Usov, “Bethe–Salpeter approach for relativistic positronium in a strong magnetic field,” Phys. Rev. D, 73, 125021 (2006).

    Article  ADS  Google Scholar 

  20. A. E. Shabad and V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom,” Phys. Rev. D, 77, 025001 (2008).

    Article  ADS  Google Scholar 

  21. V. N. Oraevskii, A. I. Rez, and V. B. Semikoz, “Spontaneous production of positrons by a Coulomb center in a homogeneous magnetic field,” JETP, 45, 428–435 (1977).

    ADS  Google Scholar 

  22. B. M. Karnako and V. S. Popov, “A hydrogen atom in a superstrong magnetic field and the Zeldovich effect,” JETP, 97, 890–914 (2003).

    Article  ADS  Google Scholar 

  23. M. I. Vysotsky and S. I. Godunov, “Critical charge in a superstrong magnetic field,” Phys. Usp., 57, 194–198 (2014).

    Article  ADS  Google Scholar 

  24. J. Reinhardt and W. Greiner, “Quantum electrodynamics of strong fields,” Rep. Progr. Phys., 40, 219–295 (1977).

    Article  ADS  Google Scholar 

  25. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin (1985).

    Book  Google Scholar 

  26. G. Plunien, B. Müller, and W. Greiner, “The Casimir effect,” Phys. Rep., 134, 87–193 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  27. V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, and V. S. Popov, “Coulomb problem for a Z > Zcr,” Phys. Usp., 58, 785–791 (2015).

    Article  ADS  Google Scholar 

  28. J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, and W. Greiner, “Probing QED vacuum with heavy ions,” arXiv:1604.08690v1 [nucl-th] (2016).

  29. E. H. Wichmann and N. M. Kroll, “Vacuum polarization in a strong Coulomb field,” Phys. Rev., 101, 843–859 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei,” Nucl. Phys. A, 244, 497–525 (1975).

    Article  ADS  Google Scholar 

  31. L. S. Brown, R. N. Cahn, and L. D. McLerran, “Vacuum polarization in a strong Coulomb field: Induced point charge,” Phys. Rev. D, 12, 581–595 (1975).

    Article  ADS  Google Scholar 

  32. A. R. Neghabian, “Vacuum polarization for an electron in a strong Coulomb field,” Phys. Rev. A, 27, 2311–2320 (1983).

    Article  ADS  Google Scholar 

  33. W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer, Berlin (2012).

    MATH  Google Scholar 

  34. P. J. Mohr, G. Plunien, and G. Soff, “QED corrections in heavy atoms,” Phys. Rep. C, 293, 227–369 (1998).

    Article  ADS  Google Scholar 

  35. T. C. Adorno, D. M. Gitman, and A. E. Shabad, “Coulomb field in a constant electromagnetic background,” Phys. Rev. D, 93, 125031 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  36. K. A. Sveshnikov and D. I. Khomovskii, “Schrödinger and Dirac particles in quasi-one-dimensional systems with a Coulomb interaction,” Theor. Math. Phys., 173, 1587–1603 (2012).

    Article  MATH  Google Scholar 

  37. G. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  38. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., 124, 1866–1878 (1961).

    Article  ADS  MATH  Google Scholar 

  39. R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  40. K. Sveshnikov, “Dirac sea correction to the topological soliton mass,” Phys. Lett. B, 255, 255–260 (1991).

    Article  ADS  Google Scholar 

  41. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New extended model of hadrons,” Phys. Rev. D, 9, 3471–3495 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  42. F. Olver, ed., NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge (2010).

    MATH  Google Scholar 

  43. V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, “Two-loop QED corrections with closed fermion loops,” Phys. Rev. A, 77, 062510 (2008).

    Article  ADS  Google Scholar 

  44. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Voronina.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 193, No. 2, pp. 276–308, November, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, Y.S., Davydov, A.S. & Sveshnikov, K.A. Vacuum effects for a one-dimensional “hydrogen atom” with Z > Zcr. Theor Math Phys 193, 1647–1674 (2017). https://doi.org/10.1134/S004057791711006X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791711006X

Keywords

Navigation