Skip to main content
Log in

Asymptotic behavior of the spectrum of combination scattering at Stokes phonons

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a class of polynomial quantum Hamiltonians used in models of combination scattering in quantum optics, we obtain the asymptotic behavior of the spectrum for large occupation numbers in the secondary quantization representation. Hamiltonians of this class can be diagonalized using a special system of polynomials determined by recurrence relations with coefficients depending on a parameter (occupation number). For this system of polynomials, we determine the asymptotic behavior a discrete measure with respect to which they are orthogonal. The obtained limit measures are interpreted as equilibrium measures in extremum problems for a logarithmic potential in an external field and with constraints on the measure. We illustrate the general case with an exactly solvable example where the Hamiltonian can be diagonalized by the canonical Bogoliubov transformation and the special orthogonal polynomials degenerate into the Krawtchouk classical discrete polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ja. Perina, Quantum Statistics of Nonlinear Optics, Reidel, Dordrecht (1984).

    Google Scholar 

  2. V. V. Vedenyapin and Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation,” Theor. Math. Phys., 121, 1516–1523 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. N. Bogolyubov and N. N. Bogolyubov Jr., Introduction to the Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  4. V. G. Bagrov and B. F. Samsonov, “Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics,” Theor. Math. Phys., 104, 1051–1060 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. F. Samsonov and J. Negro, “Darboux transformations of the Jaynes–Cummings Hamiltonian,” J. Phys. A: Math. Gen., 37, 10115–10127 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. B. Leble, “Dressing method in matter + radiation quantum models,” Theor. Math. Phys., 152, 977–990 (2007).

    Article  MATH  Google Scholar 

  7. E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable,” Sb. Math., 187, 1213–1228 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Borodin, “Riemann–Hilbert problem and discrete Bessel kernel,” Int. Math. Res. Notices, 2000, 467–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. arXiv:math/9912093v2 (1999).

  10. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete orthogonal polynomials: Asymptotics and application (Ann. Math. Stud., Vol. 164), Princeton Univ. Press, Princeton, N. J. (2007).

    MATH  Google Scholar 

  11. D. Dai and R. Wong, “Global asymptotics of Krawtchouk polynomials–a Riemann–Hilbert approach,” Chin. Ann. Math. Ser. B, 28, 1–34 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. I. Aptekarev and D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels,” Trans. Moscow Math. Soc., 73, 67–106 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Szegö, Orthogonal Polynomials (AMS Colloq. Publ., Vol. 23), Amer. Math. Soc., Providence, R. I. (1959).

    MATH  Google Scholar 

  14. A. B. J. Kuijlaars and W. Van Assche, “The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients,” J. Approx. Theory, 99, 167–197 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. I. Aptekarev and W. Van Assche, “Asymptotic of discrete orthogonal polynomials and the continuum limit of the Toda lattice,” J. Phys. A: Math. Gen., 34, 10627–10639 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. I. Aptekarev, A. Branquinho, and F. Marcell´an, “Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation,” J. Comput. Appl. Math., 78, 139–160 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. I. Aptekarev, J. S. Geronimo, and W. Van Assche, “Varying weights for orthogonal polynomials with monotonically varying recurrence coefficients,” J. Approx. Theory, 150, 214–238 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. I. Aptekarev and D. N. Tulyakov, “The leading term of the Plancherel–Rotach asymptotic formula for solutions of recurrence relations,” Sb. Math., 205, 1696–1719 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. I. Aptekarev, V. Kalyagin, López G. Lagomasino, and I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials,” J. Approx. Theory, 139, 346–370 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. I. Aptekarev, G. López Lagomasino, and I. Alvarez Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems,” Sb. Math., 196, 1089–1107 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. S. Varga, Matrix Iterative Analysis (Springer Ser. Comput. Math., Vol. 27), Springer, Berlin (2000).

    Book  MATH  Google Scholar 

  22. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields (Grundlehren Math. Wiss., Vol. 316), Springer, Berlin (1997).

    Book  MATH  Google Scholar 

  23. P. D. Dragnev and E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable,” J. Anal. Math., 72, 223–259 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. B. J. Kuijlaars and E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials,” J. Comput. Appl. Math., 99, 255–274 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Deift and K. T.-R. McLaughlin, A Continuum Limit of the Toda Lattice (Mem. AMS, Vol. 131, No. 624), Amer. Math. Soc., Providence, R. I. (1998).

    MATH  Google Scholar 

  26. V. S. Buyarov and E. A. Rakhmanov, “Families of equilibrium measures in an external field on the real axis,” Sb. Math., 190, 791–802 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Beckermann, “On a conjecture of E. A. Rakhmanov,” Construct. Approx., 16, 427–448 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Krawtchouk, “Sur une généralisation des polynômes d’Hermite,” C. R. Acad. Sci. Paris, 189, 620–622 (1929).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aptekarev.

Additional information

This research was supported by a grant from the Russian Science Foundation (Project No. 14-21-00025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptekarev, A.I., Lapik, M.A. & Orlov, Y.N. Asymptotic behavior of the spectrum of combination scattering at Stokes phonons. Theor Math Phys 193, 1480–1497 (2017). https://doi.org/10.1134/S0040577917100063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917100063

Keywords

Navigation