Skip to main content
Log in

Averaging of random walks and shift-invariant measures on a Hilbert space

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study random walks in a Hilbert space H and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on H. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure λ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in H. We define the Hilbert space H of equivalence classes of complex-valued functions on H that are square integrable with respect to a shift-invariant measure λ. Using averaging of the shift operator in H over random vectors in H with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on H, we define a one-parameter semigroup of contracting self-adjoint transformations on H, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Wentzell and M. I. Freidlin, Fluctuations in Dynamical Systems Caused by Small Random Pertubations [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  2. A. V. Skorokhod, “Products of independent random operators,” Russ. Math. Surveys, 38, 291–318 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. I. Daletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  4. V. I. Bogachev, Measure Theory [in Russian], Vol. 1, RKhD, Moscow (2006); English transl., Springer, Berlin (2007).

    Book  MATH  Google Scholar 

  5. V. I. Bogachev, N. V. Krylov, and M. Röckner, “Elliptic and parabolic equations for measures,” Russ. Math. Surveys, 64, 973–1078 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. I. D. Remizov, “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula,” Russ. J. Math. Phys., 19, 360–372 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. H.-H. Kuo, Gaussian Measures in Banach Spaces (Lect. Notes Math., Vol. 463), Springer, Berlin (1975).

    Book  MATH  Google Scholar 

  8. A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?” Proc. Steklov Inst. Math., 259, 248–272 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. I. Bogachev, Gaussian Measures [in Russian], Fizmatlit, Moscow (1997); English transl. (Math. Surv. Monogr., Vol. 62), Amer. Math. Soc., Providence, R. I. (1998).

    Book  MATH  Google Scholar 

  10. E. B. Dynkin, Markov Processes [in Russian], Fizmatlit, Moscow (1963); English transl., Springer, Berlin (1965).

    Book  MATH  Google Scholar 

  11. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae,” Izv. Math., 80, 1131–1158 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. D. Remizov, “Solution of the Schrödinger equation with the use of the translation operator,” Math. Notes, 100, 499–503 (2016).

    Article  MATH  Google Scholar 

  13. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equation (Grad. Texts Math., Vol. 194), Springer, New York (2000).

    MATH  Google Scholar 

  14. L. S. Efremova and V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups,” Theor. Math. Phys., 185, 1582–1598 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Weil, L’Intégration dans les groupes topologiques et ses applications (Actual. Sci. Indust., Vol. 869), Herman, Paris (1940).

    MATH  Google Scholar 

  16. L. Accardy, P. Gibilisco, and I. V. Volovich, “Yang–Mills gauge fields as harmonic function for the Lévy Laplacians,” Russ. J. Math. Phys., 2, 235–250 (1994).

    MATH  Google Scholar 

  17. L. Accardy and O. G. Smolyanov, “Generalized Lévy Laplacians and Ces`aro means,” Dokl. Math., 79, 90–93 (2009).

    Article  MathSciNet  Google Scholar 

  18. R. Léandre and I. V. Volovich, “The stochastic Lévy Laplacians and Yang–Mills equation on manifolds,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4, 161–172 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. O. Volkov, “Quantum probability and Lévy Laplacians,” Russ. J. Math. Phys., 20, 254–256 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin (2001).

    MATH  Google Scholar 

  21. M. Ohya and I. V. Volovich, Mathematical Foundation of Quantum Information and Computation and Its Application to Nano- and Bio-Systems, Springer, Dordrecht (2011).

    Book  MATH  Google Scholar 

  22. L. A. Borisov, Yu. N. Orlov, and V. Zh. Sakbaev, “Feynman formulas for averaging of semigroups generated by operators of Schrödinger type [in Russian],” Preprint No. 057, Keldysh Inst. of Applied Math., Moscow (2015).

    Google Scholar 

  23. V. Z. Sakbaev, O. G. Smolyanov, and N. N. Shamarov, “Non-Gaussian Lagrangian Feynman–Kac formulas,” Dokl. Math., 90, 416–418 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. O. G. Smolyanov and E. T. Shavgulidze, Continual Integrals [in Russian], URSS, Moscow (2015).

    Google Scholar 

  25. I. P. Natanson, Theory of Functions of Real Variable, Ungar, New York (1955).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zh. Sakbaev.

Additional information

This research was supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 3, pp. 473–502, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakbaev, V.Z. Averaging of random walks and shift-invariant measures on a Hilbert space. Theor Math Phys 191, 886–909 (2017). https://doi.org/10.1134/S0040577917060083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917060083

Keywords

Navigation