Skip to main content
Log in

Integrable structures of dispersionless systems and differential geometry

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons–Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov, “Dispersionless limit of integrable systems in 2+1 dimensions,” in: Singular Limits of Dispersive Waves (NATO ASI Series. Ser. B. Phys., Vol. 320, N. M. Ercolani, I. R. Gabitov, C. D. Levermore, and D. Serre, eds.), Plenum, New York (1994), pp. 165–174.

    Chapter  Google Scholar 

  2. I. M. Krichever, “The τ-function of the universal Whitham hierarchy, matrix models, and topological field theories,” Commun. Pure Appl. Math., 47, 437–475 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Gibbons and S. P. Tsarev, “Reductions of Benney’s equations,” Phys. Lett. A, 211, 19–24 (1996); “Conformal maps and reductions of the Benney equations,” Phys. Lett. A, 258, 263–270 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. V. Ferapontov and K. R. Khusnutdinova, “On integrability of (2+1)-dimensional quasilinear systems,” Commun. Math. Phys., 248, 187–206 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. E. V. Ferapontov and K. R. Khusnutdinova, “The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type,” J. Phys. A: Math. Gen., 37, 2949–2963 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E. V. Ferapontov, K. R. Khusnutdinova, and S. P. Tsarev, “On a class of three-dimensional integrable Lagrangians,” Commun. Math. Phys., 261, 225–243 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. V. Odesskii and V. V. Sokolov, “Integrable (2 + 1)-dimensional systems of hydrodynamic type,” Theor. Math. Phys., 163, 549–586 (2010).

    Article  MATH  Google Scholar 

  8. A. V. Odesskii and V. V. Sokolov, “Integrable pseudopotentials related to generalized hypergeometric functions,” Selecta Math., n.s., 16, 145–172 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. M. Krichever, “Method of averaging for two-dimensional ‘integrable’ equations,” Funct. Anal. Appl., 22, 200–213 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Odesskii, “A family of (2+1)-dimensional hydrodynamic type systems possessing a pseudopotential,” Selecta Math., n.s., 13, 727–742 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Odesskii, Geometric Methods in Physics (XXXII Workshop, Białowieża, Poland, 30 June–6 July 2013, P. Kielanowski, P. Bieliavsky, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, and T. Voronov, eds.), Birkhäuser, Basel (2014).

    Google Scholar 

  12. B. A. Dubrovin, Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.), Springer, Berlin (1996).

    Google Scholar 

  13. J. D. Fay, Theta Functions on Riemann Surfaces (Lect. Notes Math., Vol. 352), Springer, Berlin (1973).

    Book  MATH  Google Scholar 

  14. D. Mumford, Tata Lectures on Theta II: Jacobian Theta Functions and Differential Equations (Progr. Math., Vol. 43), Birkhäuser, Boston, Mass. (1984).

    MATH  Google Scholar 

  15. A. Kokotov and D. Korotkin, “Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray–Singer formula,” J. Differ. Geom., 82, 35–100 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. E. Rauch, “Weierstrass points, branch points, and moduli of Riemann surfaces,” Commun. Pure Appl. Math., 12, 543–560 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. D. Fay, Kernel Functions, Analytic Torsion, and Moduli Spaces (Memoirs Amer. Math. Soc., Vol. 96, No. 464), Amer. Math. Soc., Providence, R. I. (1992).

    MATH  Google Scholar 

  18. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, Berlin (2005).

    Book  MATH  Google Scholar 

  19. M. L. Kontsevich, “Virasoro algebra and Teichmüller spaces,” Funct. Anal. Appl., 21, 156–157 (1987).

    Article  MATH  Google Scholar 

  20. A. A. Beilinson and V. V. Schechtman, “Determinant bundles and Virasoro algebras,” Commun. Math. Phys., 118, 651–701 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Tate, “Residues of differentials on curves,” Ann. Sci. École Norm. Sup. Sér. 4, 1, 149–159 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Andreotti and A. L. Mayer, “On period relations for Abelian integrals on algebraic curves,” Ann. Scuola Norm. Sup. Pisa, 21, 189–238 (1967).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Odesskii.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 2, pp. 254–274, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odesskii, A.V. Integrable structures of dispersionless systems and differential geometry. Theor Math Phys 191, 692–709 (2017). https://doi.org/10.1134/S0040577917050105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917050105

Keywords

Navigation