Skip to main content
Log in

Cosmological models with homogeneous and isotropic spatial sections

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space–time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Clarkson, “Establishing homogeneity of the universe in the shadow of dark energy,” Compt. Rendus Phys., 13, 682–718 (2012); arXiv:1204.5505v1 [astro-ph.CO] (2012).

    Article  ADS  Google Scholar 

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York (1972).

    Google Scholar 

  3. A. Friedmann, “Über die Krümmung des Raumes,” Z. Phys., 10, 377–386 (1922).

    Article  ADS  MATH  Google Scholar 

  4. A. Friedmann, “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes,” Z. Phys., 21, 326–332 (1924).

    Article  ADS  MATH  Google Scholar 

  5. G. Lemaître, “Un univers homogène de masse constante et de rayon croissant, rendant compte de la Vitesse radiale de nébuleuses extra-galacticues,” Ann. Soc. Sci. Bruxelles A, 47, 49–59 (1927).

    MATH  Google Scholar 

  6. G. Lemaître, “L´Univers en expansion,” Ann. Soc. Sci. Bruxelles A, 53, 51–85 (1933).

    Google Scholar 

  7. H. P. Robertson, “On the foundations of relativistic cosmology,” Proc. Nat. Acad. Sci. USA, 15, 822–829 (1929).

    Article  ADS  MATH  Google Scholar 

  8. H. P. Robertson, “Relativistic cosmology,” Rev. Modern Phys., 5, 62–90 (1933).

    Article  ADS  MATH  Google Scholar 

  9. H. P. Robertson, “Kinematics and world structure,” Astrophys. J., 82, 284–301 (1935).

    Article  ADS  MATH  Google Scholar 

  10. R. C. Tolman, “The effect of the annihilation of matter on the wave-length of light from the nebulae,” Proc. Nat. Acad. Sci. USA, 16, 320–337 (1930).

    Article  ADS  MATH  Google Scholar 

  11. R. C. Tolman, “More complete discussion of the time-dependence of the non-static line element for the universe,” Proc. Nat. Acad. Sci. USA, 16, 409–420 (1930).

    Article  ADS  MATH  Google Scholar 

  12. D. Hilbert, “Die Grundlagen der Physik,” Math. Ann., 92, 1–32 (1924).

    Article  MathSciNet  Google Scholar 

  13. G. Fubini, “Sugli spazii a quattro dimensioni che ammettono un gruppo continuo di movimenti,” Ann. Mat. Pura Appl. Ser. III, 9, 33–90 (1904).

    Article  MATH  Google Scholar 

  14. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton, N. J. (1926).

    MATH  Google Scholar 

  15. R. C. Tolman, “On the estimation of distances in a curved universe with a non-static line element,” Proc. Nat. Acad. Sci. USA, 16, 511–520 (1930).

    Article  ADS  MATH  Google Scholar 

  16. A. G. Walker, “On Milne’s theory of world-structure,” Proc. London Math. Soc. Ser. 2, 42, 90–127 (1936).

    ADS  MathSciNet  MATH  Google Scholar 

  17. M. O. Katanaev, “On homogeneous and isotropic universe,” Modern Phys. Lett. A, 30, 1550186 (2015); arXiv:1511.00991v1 [gr-qc] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. M. Wald, General Relativity, Univ. Chicago Press, Chicago, Ill. (1984).

    Book  MATH  Google Scholar 

  19. M. O. Katanaev, “Geometric methods in mathematical physics,” arXiv:1311.0733v3 [math-ph] (2013).

    MATH  Google Scholar 

  20. I. Ya. Aref’eva and I. V. Volovich, “The null energy condition and cosmology,” Theor. Math. Phys., 155, 503–511 (2008).

    Article  MATH  Google Scholar 

  21. V. A. Rubakov, “The null energy condition and its violation,” Phys. Usp., 57, 128–142 (2014).

    Article  ADS  Google Scholar 

  22. G. A. Alekseev, “Collision of strong gravitational and electromagnetic waves in the expanding universe,” Phys. Rev. D, 93, 061501 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. K. Gushchin, “L p-estimates for the nontangential maximal function of the solution to a second-order elliptic equation,” Sb. Math., 207, 1384–1409 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Sb. Math., 206, 1410–1439 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations,” Theor. Math. Phys., 185, 1557–1581 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. V. Zharinov, “Bäcklund transformations,” Theoret. and Math. Phys., 189, 1681–1692 (2016).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Katanaev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 2, pp. 219–227, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katanaev, M.O. Cosmological models with homogeneous and isotropic spatial sections. Theor Math Phys 191, 661–668 (2017). https://doi.org/10.1134/S0040577917050063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917050063

Keywords

Navigation