Skip to main content
Log in

Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension d = 3

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present the method and results of a renormalization group description of nonequilibrium critical relaxation of model A with evolution from an initial high-temperature state. We calculate the two-time dependence of the correlation function and response function and find a violation of the fluctuationdissipation theorem in the nonequilibrium critical regime. For the limit fluctuation-dissipation relation, which is a universal property of the nonequilibrium critical dynamics, we calculate the fluctuation and impurity corrections in the two-loop approximation at the fixed space dimension d = 3 using Padé–Borel summation for asymptotic series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Cugliandolo, “Course 7: Dynamics of glassy systems,” in: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter (école d’Eté de Physique Théorique, Vol. 77, J-L. Barrat, M. V. Feigelman, J. Kurchan, and J. Dalibard, eds.), Springer, Berlin (2003), pp. 367–521.

    Google Scholar 

  2. M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions, Vol. 2, Ageing and Dynamical Scaling Far From Equilibrium, Springer, Heidelberg (2010).

    MATH  Google Scholar 

  3. N. Afzal and M. Pleimling, “Aging processes in systems with anomalous slow dynamics,” Phys. Rev. E, 87, 012114 (2013).

    Article  ADS  Google Scholar 

  4. G. Ehlers, “Study of slow dynamic processes in magnetic systems by neutron spin-echo spectroscopy,” J. Phys., 18, R231–R244 (2006).

    ADS  Google Scholar 

  5. L. Berthier and J. Kurchan, “Non-equilibrium glass transitions in driven and active matter,” Nature Phys., 9, 310–314 (2013).

    Article  ADS  Google Scholar 

  6. E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, and L. F. Cugliandolo, “Slow dynamics and aging in spin glasses,” in: Complex Behaviour of Glassy Systems (Proc. XIV Sitges Conf., Sitges, Barcelona, Spain, 10–14 June 1996, M. Rubi and C. Pérez-Vicente, eds.), Springer, Berlin (1997), pp. 184–219; arXiv:cond-mat/ 9607224v1 (1996).

    Google Scholar 

  7. J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mézard, “Out of equilibrium dynamics in spin-glasses and other glassy system,” in: Spin Glasses and Random Fields (Directions Cond. Mat. Phys., Vol. 12, A. P. Young, ed.), World Scientific, Singapore (1998), pp. 161–223.

    Google Scholar 

  8. P. Calabrese and A. Gambassi, “Ageing properties of critical systems,” J. Phys. A: Math. Gen., 38, R133–R193 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L. Berthier, P. C. W. Holdsworth, and M. Sellitto, “Nonequilibrium critical dynamics of the two-dimensional XY model,” J. Phys. A: Math. Gen., 34, 1805–1824 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Gambassi, “Relaxation phenomena at criticality,” Eur. Phys. J. B, 64, 379–386 (2008).

    Article  ADS  Google Scholar 

  11. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, “Aging and nonequilibrium critical phenomena in Monte Carlo simulations of 3D pure and diluted Ising models,” Prog. Theor. Exp. Phys., 2015, 053A01 (2015).

    Article  Google Scholar 

  12. L. F. Cugliandolo and J. Kurchan, “Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model,” Phys. Rev. Lett., 71, 173–176 (1993).

    Article  ADS  Google Scholar 

  13. L. F. Cugliandolo and J. Kurchan, “Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics,” Phys. Rev. E, 55, 3898–3914 (1997).

    Article  ADS  Google Scholar 

  14. L. F. Cugliandolo, “Effective temperatures out of equilibrium,” AIP Conf. Proc., 484, 238–248 (1999).

    Article  ADS  MATH  Google Scholar 

  15. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, “Renormalization-group description of nonequilibrium critical short-time relaxation processes: A three-loop approximation,” JETP, 106, 1095–1101 (2008).

    Article  ADS  Google Scholar 

  16. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and M. V. Rychkov, “Nonequilibrium critical relaxation of structurally disordered systems in the short-time regime: Renormalization group description and computer simulation,” JETP, 110, 253–264 (2010).

    Article  ADS  Google Scholar 

  17. V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, “Computer simulation of the critical behavior of 3D disordered ising model,” JETP, 105, 371–378 (2007).

    Article  ADS  Google Scholar 

  18. V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, “Shorttime dynamics and critical behavior of the three-dimensional site-diluted Ising model,” Phys. Rev. E, 81, 011130 (2010).

    Article  ADS  Google Scholar 

  19. V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, and V. Yu. Kolesnikov, “Short-time critical dynamics of the three-dimensional systems with long-range correlated disorder,” Progr. Theor. Phys., 117, 973–991 (2007).

    Article  ADS  MATH  Google Scholar 

  20. P. V. Prudnikov and M. A. Medvedeva, “Non-equilibrium critical relaxation of the 3d heisenberg magnets with long-range correlated disorder,” Progr. Theor. Phys., 127, 369–382 (2012).

    Article  ADS  Google Scholar 

  21. N. Rosov, C. Hohenemser, and M. Eibschütz, “Dynamic critical behavior of the random-exchange Ising system Fe0.9Zn0.1F2 determined via Mössbauer spectroscopy,” Phys. Rev. B, 46, 3452–3457 (1992).

    Article  ADS  Google Scholar 

  22. P. Calabrese and A. Gambassi, “Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics of the O(N) Landau–Ginzburg Hamiltonian,” Phys. Rev. E, 66, 066101 (2002).

    Article  ADS  Google Scholar 

  23. P. Calabrese and A. Gambassi, “Aging and fluctuation-dissipation ratio for the dilute Ising model,” Phys. Rev. B, 66, 212407 (2002).

    Article  ADS  Google Scholar 

  24. P. C. Hohenberg and B. I. Halperin, Rev. Modern Phys., 49, 435–479 (1977).

    Article  ADS  Google Scholar 

  25. P. V. Prudnikov, V. V. Prudnikov, and E. A. Pospelov, “Calculation of the fluctuation-dissipation ratio for the nonequilibrium critical behavior of disordered systems,” JETP Lett., 98, 619–625 (2013).

    Article  Google Scholar 

  26. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, “Monte Carlo investigations of the influence of structural defects on aging effects and the violation of the fluctuation-dissipation theorem for a nonequilibrium critical behavior in the three-dimensional Ising model,” JETP, 118, 401–409 (2014).

    Article  ADS  Google Scholar 

  27. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Methods for the Description of Nonequilibrium Critical Behavior in Structurally Disordered Systems [in Russian], Nauka, Moscow (2013).

    Google Scholar 

  28. P. Calabrese and A. Gambassi, “Aging in ferromagnetic systems at criticality near four dimensions,” Phys. Rev. E, 65, 066120 (2002).

    Article  ADS  Google Scholar 

  29. H. K. Janssen, B. Schaub, and B. Schmittmann, “New universal short-time scaling behaviour of critical relaxation processes,” Z. Phys B., 73, 539–549 (1989).

    Article  ADS  Google Scholar 

  30. C. Godrèche and J. M. Luck, “Response of non-equilibrium systems at criticality: Ferromagnetic models in dimension two and above,” J. Phys. A: Math. Gen., 33, 9141–9164 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. B. Harris, “Effect of random defects on the critical behaviour of Ising models,” J. Phys. C, 7, 1671–1692 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lavrukhin.

Additional information

This work was supported by a grant from the Russian Science Foundation (Project No. 14-12-00562).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 468–478, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrukhin, I.V., Prudnikov, V.V. & Prudnikov, P.V. Renormalization group description of the nonequilibrium critical dynamics of spin systems at the fixed space dimension d = 3. Theor Math Phys 190, 402–410 (2017). https://doi.org/10.1134/S0040577917030096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917030096

Keywords

Navigation