The WKB method for the quantum mechanical two-Coulomb-center problem

Abstract

Using a modified perturbation theory, we obtain asymptotic expressions for the two-center quasiradial and quasiangular wave functions for large internuclear distances R. We show that in each order of 1/R, corrections to the wave functions are expressed in terms of a finite number of Coulomb functions with a modified charge. We derive simple analytic expressions for the first, second, and third corrections. We develop a consistent scheme for obtaining WKB expansions for solutions of the quasiangular equation in the quantum mechanical two-Coulomb-center problem. In the framework of this scheme, we construct semiclassical two-center wave functions for large distances between fixed positively charged particles (nuclei) for the entire space of motion of a negatively charged particle (electron). The method ensures simple uniform estimates for eigenfunctions at arbitrary large internuclear distances R, including R ≥ 1. In contrast to perturbation theory, the semiclassical approximation is not related to the smallness of the interaction and hence has a wider applicability domain, which permits investigating qualitative laws for the behavior and properties of quantum mechanical systems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  2. 2.

    L. I. Men’shikov and L. N. Somov, “Status of muon catalysis of nuclear fusion reactions,” Sov. Phys. Usp., 33, 616–646 (1990).

    ADS  Article  Google Scholar 

  3. 3.

    S. S. Gershtein, Yu. V. Petrov, and L. I. Ponomarev, “Muon catalysis and nuclear breeding,” Sov. Phys. Usp., 33, 591–615 (1990).

    ADS  Article  Google Scholar 

  4. 4.

    R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of Highly Charged Ions (Springer Series Electrophys., Vol. 13), Springer, Berlin (1985).

    Google Scholar 

  5. 5.

    E. A. Solov’ev, “Nonadiabatic transitions in atomic collisions,” Sov. Phys. Usp., 32, 228–250 (1989).

    ADS  Article  Google Scholar 

  6. 6.

    M. J. Jamieson, A. Dalgarno, M. Aymar, and J. Tharamel, “A study of exchange interactions in alkali molecular ion dimers with application to charge transfer in cold Cs,” J. Phys. B, 42, 095203 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    M. Hnatič, V. M. Khmara, V. Yu. Lazur, and O. K. Reity, “Quasiclassical study of the quantum mechanical two-coulomb-centre problem,” EPJ Web of Conf., 108, 02028 (2016).

    Article  Google Scholar 

  8. 8.

    I. V. Komarov and E. A. Solov’ev, “Quasiintersection of terms in the problem of two Coulomb centers with strongly different charges,” Theor. Math. Phys., 40, 645–649 (1979).

    Article  Google Scholar 

  9. 9.

    T. P. Grozdanov, R. K. Janev, and V. Yu. Lazur, “Asymptotic theory of the strongly asymmetric two-Coulombcenter problem,” Phys. Rev. A, 32, 3425–3434 (1985).

    ADS  Article  Google Scholar 

  10. 10.

    M. I. Karbovanets, V. Yu. Lazur, and M. I. Chibisov, “Nonresonant exchange between two electrons,” JETP, 59, 47–52 (1984).

    Google Scholar 

  11. 11.

    V. Yu. Lazur, Yu. Yu. Mashika, R. K. Janev, and T. P. Grozdanov, “Quasicrossing of rydberg terms in the problem of two Coulomb centers with strongly differing charges,” Theor. Math. Phys., 87, 401–410 (1991).

    Article  Google Scholar 

  12. 12.

    P. P. Gorvat, V. Yu. Lazur, S. I. Migalina, I. M. Shuba, and R. K. Janev, “Splitting of potential curves in the two-center quantum-mechanical problem for the Dirac equation,” Theor. Math. Phys., 109, 1423–1436 (1996).

    Article  MATH  Google Scholar 

  13. 13.

    O. K. Reity, V. Yu. Lazur, and A. V. Katernoha, “The quantum mechanical two-Coulomb-centre problem in the Dirac equation framework,” J. Phys. B, 35, 1–17 (2002).

    ADS  Article  Google Scholar 

  14. 14.

    D. I. Bondar, M. Gnatich, and V. Yu. Lazur, “Two-dimensional problem of two Coulomb centers at small intercenter distances,” Theor. Math. Phys., 148, 1100–1116 (2006).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    D. I. Bondar, M. Hnatich, and V. Yu. Lazur, “The two Coulomb centres problem at small intercentre separations in the space of arbitrary dimension,” J. Phys. A: Math. Theor., 40, 1791–1807 (2007).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    D. I. Bondar, M. Hnatič, and V. Yu. Lazur, “Symbolic computations for the two-Coulomb-centers problem in the space of arbitrary dimension,” Phys. Part. Nucl. Lett., 5, 255–258 (2008).

    Article  Google Scholar 

  17. 17.

    E. E. Nikitin and S. Ya. Umanskii, Nonadiabatic Transitions in Slow Atomic Collisions [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  18. 18.

    O. B. Firsov, “Resonant recharging of ions in slow collisions [in Russian],” ZhETP, 21, 1001–1008 (1951).

    Google Scholar 

  19. 19.

    T. M. Kereselidze and M. I. Chibisov, “Asymptotic behavior of a two-center Coulomb wave function [in Russian],” in: Physics of Electron and Atomic Collisions [in Russian], LFTI, Leningrad (1989), pp. 160–165.

    Google Scholar 

  20. 20.

    B. M. Smirnov, Asymptotic Methods in the Theory of Atomic Collisions [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  21. 21.

    E. E. Nikitin and B. M. Smirnov, Slow Atomic Collisions [in Russian], Energoatomizdat, Moscow (1990).

    Google Scholar 

  22. 22.

    M. I. Chibisov and R. K. Janev, “Asymptotic exchange interactions in ion–atom systems,” Phys. Rep., 166, 1–87 (1988).

    ADS  Article  Google Scholar 

  23. 23.

    M. B. Kadomtsev and S. I. Vinitsky, “Perturbation theory within the O(4,2) group for a hydrogen-like atom in the field of a distant charge,” J. Phys. A: Math. Gen., 18, L689–L695 (1985).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    E. A. Solov’ev, “Approximate motion intergal for a hydrogen atom in a magnetic field,” JETP Lett., 34, 265–268 (1981).

    ADS  Google Scholar 

  25. 25.

    T. M. Kereselidze, Z. S. Machavariani, and I. L. Noselidze, “The one-Coulomb-centre problem in the spheroidal coordinate system: Asymptotic solutions,” J. Phys. B, 29, 257–273 (1996).

    ADS  Article  Google Scholar 

  26. 26.

    T. M. Kereselidze, I. L. Noselidze, and M. I. Chibisov, “Analytical expressions for two-Coulomb-centre wavefunctions at large internuclear distances,” J. Phys. B, 36, 853–871 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (1989); English transl. prev. ed., Pergamon (1976).

    Google Scholar 

  28. 28.

    J. Heading, An Introduction to Phase-Integral Methods, Wiley, New York (1962).

    Google Scholar 

  29. 29.

    N. Fröman and P. O. Fröman, JWKB Approximation: Contributions to the Theory, North-Holland, Amsterdam (1965).

    Google Scholar 

  30. 30.

    L. I. Ponomarev, “On asymptotic representations of spheroidal functions,” USSR Comput. Math. Math. Phys., 7, 268–272 (1967).

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    M. V. Berry and K. E. Mount, “Semiclassical approximations in wave mechanics,” Rep. Progr. Phys., 35, 315–397 (1972).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Hnatich.

Additional information

This research was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.a03.21.0008) and the Ministry of Education, Science, Research, and Sport of the Slovak Republic (VEGA Grant No. 1/0345/17).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 403–418, March, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hnatich, M., Khmara, V.M., Lazur, V.Y. et al. The WKB method for the quantum mechanical two-Coulomb-center problem. Theor Math Phys 190, 345–358 (2017). https://doi.org/10.1134/S0040577917030047

Download citation

Keywords

  • semiclassical approximation
  • WKB method
  • two Coulomb centers
  • asymptotic solution