Advertisement

Theoretical and Mathematical Physics

, Volume 190, Issue 3, pp 345–358 | Cite as

The WKB method for the quantum mechanical two-Coulomb-center problem

  • M. HnatichEmail author
  • V. M. Khmara
  • V. Yu. Lazur
  • O. K. Reity
Article

Abstract

Using a modified perturbation theory, we obtain asymptotic expressions for the two-center quasiradial and quasiangular wave functions for large internuclear distances R. We show that in each order of 1/R, corrections to the wave functions are expressed in terms of a finite number of Coulomb functions with a modified charge. We derive simple analytic expressions for the first, second, and third corrections. We develop a consistent scheme for obtaining WKB expansions for solutions of the quasiangular equation in the quantum mechanical two-Coulomb-center problem. In the framework of this scheme, we construct semiclassical two-center wave functions for large distances between fixed positively charged particles (nuclei) for the entire space of motion of a negatively charged particle (electron). The method ensures simple uniform estimates for eigenfunctions at arbitrary large internuclear distances R, including R ≥ 1. In contrast to perturbation theory, the semiclassical approximation is not related to the smallness of the interaction and hence has a wider applicability domain, which permits investigating qualitative laws for the behavior and properties of quantum mechanical systems.

Keywords

semiclassical approximation WKB method two Coulomb centers asymptotic solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    L. I. Men’shikov and L. N. Somov, “Status of muon catalysis of nuclear fusion reactions,” Sov. Phys. Usp., 33, 616–646 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. S. Gershtein, Yu. V. Petrov, and L. I. Ponomarev, “Muon catalysis and nuclear breeding,” Sov. Phys. Usp., 33, 591–615 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of Highly Charged Ions (Springer Series Electrophys., Vol. 13), Springer, Berlin (1985).CrossRefGoogle Scholar
  5. 5.
    E. A. Solov’ev, “Nonadiabatic transitions in atomic collisions,” Sov. Phys. Usp., 32, 228–250 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    M. J. Jamieson, A. Dalgarno, M. Aymar, and J. Tharamel, “A study of exchange interactions in alkali molecular ion dimers with application to charge transfer in cold Cs,” J. Phys. B, 42, 095203 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    M. Hnatič, V. M. Khmara, V. Yu. Lazur, and O. K. Reity, “Quasiclassical study of the quantum mechanical two-coulomb-centre problem,” EPJ Web of Conf., 108, 02028 (2016).CrossRefGoogle Scholar
  8. 8.
    I. V. Komarov and E. A. Solov’ev, “Quasiintersection of terms in the problem of two Coulomb centers with strongly different charges,” Theor. Math. Phys., 40, 645–649 (1979).CrossRefGoogle Scholar
  9. 9.
    T. P. Grozdanov, R. K. Janev, and V. Yu. Lazur, “Asymptotic theory of the strongly asymmetric two-Coulombcenter problem,” Phys. Rev. A, 32, 3425–3434 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    M. I. Karbovanets, V. Yu. Lazur, and M. I. Chibisov, “Nonresonant exchange between two electrons,” JETP, 59, 47–52 (1984).Google Scholar
  11. 11.
    V. Yu. Lazur, Yu. Yu. Mashika, R. K. Janev, and T. P. Grozdanov, “Quasicrossing of rydberg terms in the problem of two Coulomb centers with strongly differing charges,” Theor. Math. Phys., 87, 401–410 (1991).CrossRefGoogle Scholar
  12. 12.
    P. P. Gorvat, V. Yu. Lazur, S. I. Migalina, I. M. Shuba, and R. K. Janev, “Splitting of potential curves in the two-center quantum-mechanical problem for the Dirac equation,” Theor. Math. Phys., 109, 1423–1436 (1996).CrossRefzbMATHGoogle Scholar
  13. 13.
    O. K. Reity, V. Yu. Lazur, and A. V. Katernoha, “The quantum mechanical two-Coulomb-centre problem in the Dirac equation framework,” J. Phys. B, 35, 1–17 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    D. I. Bondar, M. Gnatich, and V. Yu. Lazur, “Two-dimensional problem of two Coulomb centers at small intercenter distances,” Theor. Math. Phys., 148, 1100–1116 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. I. Bondar, M. Hnatich, and V. Yu. Lazur, “The two Coulomb centres problem at small intercentre separations in the space of arbitrary dimension,” J. Phys. A: Math. Theor., 40, 1791–1807 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. I. Bondar, M. Hnatič, and V. Yu. Lazur, “Symbolic computations for the two-Coulomb-centers problem in the space of arbitrary dimension,” Phys. Part. Nucl. Lett., 5, 255–258 (2008).CrossRefGoogle Scholar
  17. 17.
    E. E. Nikitin and S. Ya. Umanskii, Nonadiabatic Transitions in Slow Atomic Collisions [in Russian], Atomizdat, Moscow (1979).Google Scholar
  18. 18.
    O. B. Firsov, “Resonant recharging of ions in slow collisions [in Russian],” ZhETP, 21, 1001–1008 (1951).Google Scholar
  19. 19.
    T. M. Kereselidze and M. I. Chibisov, “Asymptotic behavior of a two-center Coulomb wave function [in Russian],” in: Physics of Electron and Atomic Collisions [in Russian], LFTI, Leningrad (1989), pp. 160–165.Google Scholar
  20. 20.
    B. M. Smirnov, Asymptotic Methods in the Theory of Atomic Collisions [in Russian], Atomizdat, Moscow (1973).Google Scholar
  21. 21.
    E. E. Nikitin and B. M. Smirnov, Slow Atomic Collisions [in Russian], Energoatomizdat, Moscow (1990).Google Scholar
  22. 22.
    M. I. Chibisov and R. K. Janev, “Asymptotic exchange interactions in ion–atom systems,” Phys. Rep., 166, 1–87 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    M. B. Kadomtsev and S. I. Vinitsky, “Perturbation theory within the O(4,2) group for a hydrogen-like atom in the field of a distant charge,” J. Phys. A: Math. Gen., 18, L689–L695 (1985).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    E. A. Solov’ev, “Approximate motion intergal for a hydrogen atom in a magnetic field,” JETP Lett., 34, 265–268 (1981).ADSGoogle Scholar
  25. 25.
    T. M. Kereselidze, Z. S. Machavariani, and I. L. Noselidze, “The one-Coulomb-centre problem in the spheroidal coordinate system: Asymptotic solutions,” J. Phys. B, 29, 257–273 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    T. M. Kereselidze, I. L. Noselidze, and M. I. Chibisov, “Analytical expressions for two-Coulomb-centre wavefunctions at large internuclear distances,” J. Phys. B, 36, 853–871 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (1989); English transl. prev. ed., Pergamon (1976).Google Scholar
  28. 28.
    J. Heading, An Introduction to Phase-Integral Methods, Wiley, New York (1962).zbMATHGoogle Scholar
  29. 29.
    N. Fröman and P. O. Fröman, JWKB Approximation: Contributions to the Theory, North-Holland, Amsterdam (1965).zbMATHGoogle Scholar
  30. 30.
    L. I. Ponomarev, “On asymptotic representations of spheroidal functions,” USSR Comput. Math. Math. Phys., 7, 268–272 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    M. V. Berry and K. E. Mount, “Semiclassical approximations in wave mechanics,” Rep. Progr. Phys., 35, 315–397 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Hnatich
    • 1
    Email author
  • V. M. Khmara
    • 2
  • V. Yu. Lazur
    • 3
  • O. K. Reity
    • 3
  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Institute of PhysicsPavol Jozef Šafárik UniversityKošiceSlovakia
  3. 3.Department of Theoretical PhysicsUzhhorod National UniversityUzhhorodUkraine

Personalised recommendations