Skip to main content
Log in

Phenomenological holographic model of superconductivity

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a soft-wall holographic model for describing high-temperature superconductivity. Compared with the existing bottom-up holographic superconductivity models, the proposed approach is more phenomenological. On the other hand, the proposed model is mathematically simpler and has more degrees of freedom for describing the conductivity of real high-temperature superconductors. We construct several examples of such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Horowitz, “Introduction to holographic superconductors,” in: From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence (Lect. Notes Phys., Vol. 828, E. Papantonopoulos, ed.), Springer, Berlin (2011), pp. 313–347.

    Chapter  Google Scholar 

  2. R. G. Cai, L. Li, L. F. Li, and R. Q. Yang, “Introduction to holographic superconductor models,” Sci. China Phys. Mech. Astron., 58, 060401 (2015).

    Google Scholar 

  3. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a holographic superconductor,” Phys. Rev. Lett., 101, 031601 (2008).

    Article  ADS  Google Scholar 

  4. E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad, “Concepts in high temperature superconductivity,” arXiv:cond-mat/0206217v1 (2002).

  5. A. J. Leggett, What DO we know about high Tc?” Nature Phys., 2, 134–136 (2006).

    Article  ADS  Google Scholar 

  6. P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates, Princeton Univ. Press, Princeton (1997).

  7. E. Shuster and D. T. Son, “On finite density QCD at large N(c),” Nucl. Phys. B, 573, 434–446 (2000).

    Article  ADS  Google Scholar 

  8. S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Q. Grav., 26, 224002 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D, 74, 015005 (2006).

    Article  ADS  Google Scholar 

  10. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B, 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. T. Horowitz and M. M. Roberts, “Holographic superconductors with various condensates,” Phys. Rev. D, 78, 126008 (2008).

    Article  ADS  Google Scholar 

  13. K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and A. Yazdani, “Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2Ca0.92Y0.08Cu2O8+d,” Nature, 447, 569–572 (2007).

    Article  ADS  Google Scholar 

  14. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, “QCD and a holographic model of hadrons,” Phys. Rev. Lett., 95, 261602 (2005)

    Article  ADS  Google Scholar 

  15. L. Da Rold and A. Pomarol, “Chiral symmetry breaking from five-dimensional spaces,” Nucl. Phys. B, 721, 79–97 (2005).

    Article  ADS  MATH  Google Scholar 

  16. S. S. Afonin, “No-wall holographic model for QCD,” Internat. J. Modern Phys. A, 26, 3615–3621 (2011).

    Article  ADS  MATH  Google Scholar 

  17. S. Sachdev, “Model of a Fermi liquid using gauge–gravity duality,” Phys. Rev. D, 84, 066009 (2011).

    Article  ADS  Google Scholar 

  18. A. Bagrov, B. Meszena, and K. Schalm, “Pairing induced superconductivity in holography,” JHEP, 1409, 106 (2014); arXiv:1403.3699v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  19. P. Breitenlohner and D. Z. Freedman, “Stability in gauged extended supergravity,” Ann. Phys., 144, 249–281 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li, “Quantum critical behaviour in a high-Tc superconductor,” Nature, 425, 271–273 (2003).

    Article  ADS  Google Scholar 

  21. Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity: I,” Phys. Rev., 122, 345–358 (1961).

    Article  ADS  Google Scholar 

  22. S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space,” Comm. Math. Phys., 87, 577–588 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. P. Herzog, “Holographic prediction of the deconfinement temperature,” Phys. Rev. Lett., 98, 091601 (2007).

    Article  ADS  Google Scholar 

  24. J. Erdmenger, P. Kerner, and S. Müller, “Towards a holographic realization of Homes’ law,” JHEP, 1210, 21 (2012); arXiv:1206.5305v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  25. J. Erdmenger, B. Herwerth, S. Klug, R. Meyer, and K. Schalm, “S-wave superconductivity in anisotropic holographic insulators,” JHEP, 1505, 094 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  26. C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, “A universal scaling relation in high-temperature superconductors,” Nature, 430, 539–540 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Afonin.

Additional information

This research as supported by St. Petersburg State University (Research Grant No. 11.38.189.2014) and in part by the Russian Foundation for Basic Research (Grant No. 16-02-00348-a).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 2, pp. 254–266, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.S., Pusenkov, I.V. Phenomenological holographic model of superconductivity. Theor Math Phys 190, 217–227 (2017). https://doi.org/10.1134/S0040577917020040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917020040

Keywords

Navigation