Skip to main content
Log in

Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In a very general setting, we discuss possibilities of applying p-adics to geophysics using a p-adic diffusion representation of the master equations for the dynamics of a fluid in capillaries in porous media and formulate several mathematical problems motivated by such applications. We stress that p-adic wavelets are a powerful tool for obtaining analytic solutions of diffusion equations. Because p-adic diffusion is a special case of fractional diffusion, which is closely related to the fractal structure of the configuration space, p-adic geophysics can be regarded as a new approach to fractal modeling of geophysical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izv. Math., 66, 367–376 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. V. Kozyrev, “p-Adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys., 138, 322–332 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of P-adic Distributions: Linear and Nonlinear Models (London Math. Soc. Lec. Note Series, Vol. 370), Cambridge Univ. Press, Cambridge (2010).

    Book  MATH  Google Scholar 

  4. S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, “The Cauchy problems for evolutionary pseudodifferential equations over p-adic field and the wavelet theory,” J. Math. Anal. Appl., 375, 82–98 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Khrennikov, K. Oleschko, and M. de Jesús Correa López, “Application of p-adic wavelets to model reaction–diffusion dynamics in random porous media,” J. Fourier Anal. Appl., 22, 809–822 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. I. V. Volovich, “p-Adic string,” Class. Q. Grav., 4, L83–L87 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  7. I. V. Volovich, “p-adic space–time and string theory,” Theor. Math. Phys., 71, 574–576 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Ya. Aref’eva, B. G. Dragović, and I. V. Volovich, “On the p-adic summability of the anharmonic oscillator,” Phys. Lett. B, 200, 512–514 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Series Sov. East Eur. Math., Vol. 1), World Scientific, Singapore (1994).

    Book  MATH  Google Scholar 

  10. A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Math. Its Appl., Vol. 309), Kluwer, Dordrecht (1994).

    Book  MATH  Google Scholar 

  11. V. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, “Application of p-adic analysis to models of breaking of replica symmetry,” J. Phys. A: Math. Gen., 32, 8785–8791 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. Parisi and N. Sourlas, “p-Adic numbers and replica symmetry breaking,” Eur. Phys. J. B, 14, 535–542 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen., 35, 177–189 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. V. Kozyrev, “Ultrametric dynamics as a model of interbasin kinetics,” J. Contemp. Math. Anal., 41, 38–48 (2006).

    MathSciNet  Google Scholar 

  15. S. V. Kozyrev, “Ultrametric analysis and interbasin kinetics,” in: p-Adic Mathematical Physics (AIP Conf. Proc., Vol. 826, A. Yu. Khrennikov, Z. Rakic, and I. V. Volovich, eds.), AIP, Melville, New York (2006), pp. 121–128.

    Google Scholar 

  16. S. Albeverio, R. Cianci, and A. Yu. Khrennikov, “p-Adic valued quantization,” p-Adic Numbers Ultrametric Anal. Appl., 1, 91–104 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. V. Kozyrev, “Dynamics on rugged landscapes of energy and ultrametric diffusion,” p-Adic Numbers Ultrametric Anal. Appl., 2, 122–132 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Khrennikov, Modeling of Processes of Thinking in p-adic Coordinates [in Russian], Fizmatlit, Moscow (2004).

    Google Scholar 

  19. D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems, Cambridge Univ. Press, Cambridge (2000).

    Book  MATH  Google Scholar 

  20. B. O’Shaughnessy and I. Procaccia, “Diffusion on fractals,” Phys. Rev. A, 32, 3073–3083 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Berkowitz and R. P. Ewing, “Percolation theory and network modeling applications in soil physics,” Surv. Geophys., 19, 23–72 (1998).

    Article  ADS  Google Scholar 

  22. J.-W. Kim, E. Perfect, and H. Choi, “Anomalous diffusion in two-dimensional Euclidean and prefractal geometrical models of heterogeneous porous media,” Water Resour. Res., 43, W01405 (2006).

    ADS  Google Scholar 

  23. A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields (Monogr. Textbooks Pure Appl. Math., Vol. 244), New York (2001).

    Book  Google Scholar 

  24. A. N. Kochubei, “Radial solutions of non-Archimedean pseudo-differential equations,” Pacific J. Math., 269, 355–369 (2014); arXiv:1302.4850v1 [math.CA] (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. W. A. Zú˜niga-Galindo, “Fundamental solutions of pseudo-differential operators over p-adic fields,” Rend. Sem. Mat. Univ. Padova, 109, 241–245 (2003).

    MathSciNet  MATH  Google Scholar 

  26. W. A. Zú˜niga-Galindo, “Parabolic equations and Markov processes over p-adic fields,” Potential Anal., 28, 185–200 (2008).

    Article  MathSciNet  Google Scholar 

  27. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep., 339, 1–77 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., 37, R161–R208 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Fedotov, S. H. Kim, and H. Pitsch, “Anomalous Knudsen diffusion and reactions in disordered porous media,” Center for Turbulence Research Annual Research Briefs, 323–331 (2007).

    Google Scholar 

  30. B. I. Henry, T. A. M. Langlands, and S. L. Wearne, “Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction–diffusion equations,” Phys. Rev. E, 74, 031116 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Malek and M.-O. Coppens, “Knudsen self- and Fickian diffusion in rough nanoporous media,” J. Chem. Phys., 119, 2801–2811 (2003).

    Article  ADS  Google Scholar 

  32. A. J. Dammers and M.-O. Coppens, “Anomalous Knudsen diffusion in simple pore models,” Diff. Fund., 2, 14.1–14.2 (2005).

    Google Scholar 

  33. A. N. Kochubei, “Distributed order calculus and equations of ultraslow diffusion,” J. Math. Anal. Appl., 340, 252–281 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Yu. Khrennikov and V. M. Shelkovich, “Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations,” Appl. Comput. Harmon. Anal., 28, 1–23 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Oleschko, J.-F. Parrot, G. Ronquillo, S. Shoba, G. Stoops, and V. Marcelino, “Weathering: Toward a fractal quantifying,” Math. Geology, 36, 607–627 (2004).

    Article  Google Scholar 

  36. K. Oleschko, G. Korvin, B. Figueroa, M. A. Vuelvas, A. S. Balankin, L. Flores, and D. Carreón, “Fractal radar scattering from soil,” Phys. Rev. E, 67, 041403 (2003); Erratum, 68, 039904 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Khrennikov.

Additional information

This paper was financially supported by the project SENER-CONACYT-Hidrocarburos, Yacimiento Petrolero como un Reactor Fractal, N 168638 and the Consejo Nacional de Ciencia y Tecnolog´ıa (CONACYT), Mexico, under grant 312-2015, Fronteras de la Ciencia.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 1, pp. 179–190, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleschko, K., Khrennikov, A.Y. Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions. Theor Math Phys 190, 154–163 (2017). https://doi.org/10.1134/S0040577917010135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917010135

Keywords

Navigation