Skip to main content
Log in

Application of the trigonal curve to the Blaszak–Marciniak lattice hierarchy

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a method for constructing algebro-geometric solutions of the Blaszak–Marciniak (BM) lattice hierarchy based on the theory of trigonal curves. We first derive the BM lattice hierarchy associated with a discrete (3×3)-matrix spectral problem using Lenard recurrence relations. Using the characteristic polynomial of the Lax matrix for the BM lattice hierarchy, we introduce a trigonal curve with two infinite points, which we use to establish the associated Dubrovin-type equations. We then study the asymptotic properties of the algebraic function carrying the data of the divisor and the Baker–Akhiezer function near the two infinite points on the trigonal curve. We finally obtain algebro-geometric solutions of the entire BM lattice hierarchy in terms of the Riemann theta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Krichever, “Algebraic-geometric construction of the Zakharov–Shabat equations and their periodic solutions,” Sov. Math. Dokl., 17, 394–397 (1976).

    MATH  Google Scholar 

  2. I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry,” Funct. Anal. Appl., 11, 12–26 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. A. Dubrovin, “Theta functions and non-linear equations,” Russian Math. Surv., 36, 11–92 (1981).

    Article  ADS  MATH  Google Scholar 

  4. B. A. Dubrovin, “Matrix finite-zone operators,” J. Soviet Math., 28, 20–50 (1985).

    Article  MATH  Google Scholar 

  5. E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).

    MATH  Google Scholar 

  6. E. Date and S. Tanaka, “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice,” Progr. Theoret. Phys. Suppl., 59, 107–125 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. C. Ma and M. J. Ablowitz, “The periodic cubic Schrödinger equation,” Stud. Appl. Math., 65, 113–158 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation,” Duke Math. J., 52, 329–377 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. O. Smirnov, “Real finite-gap regular solutions of the Kaup–Boussinesq equation,” Theor. Math. Phys., 66, 19–31 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. P. McKean, “Integrable systems and algebraic curves,” in: Global Analysis (Lect. Notes Math., Vol. 755, M. Grmela and J. E. Marsden, eds.), Springer, Berlin (1979), pp. 83–200.

    Chapter  Google Scholar 

  11. S. J. Alber, “On finite-zone solutions of relativistic Toda lattices,” Lett. Math. Phys., 17, 149–155 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F. Gesztesy and R. Ratneseelan, “An alternative approach to algebro-geometric solutions of the AKNS hierarchy,” Rev. Math. Phys., 10, 345–391 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Gesztesy and H. Holden, “Algebro-geometric solutions of the Camassa–Holm hierarchy,” Rev. Mat. Iberoamericana, 19, 73–142 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. S. Geronimo, F. Gesztesy, and H. Holden, “Algebro-geometric solutions of the Baxter–Szegö difference equation,” Commun. Math. Phys., 258, 149–177 (2005).

    Article  ADS  MATH  Google Scholar 

  15. X. G. Geng and C. W Cao, “Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions,” Nonlinearity, 14, 1433–1452 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. X. G. Geng, H. H. Dai, and J. Y. Zhu, “Decomposition of the discrete Ablowitz–Ladik hierarchy,” Stud. Appl. Math., 118, 281–312 (2007).

    Article  MathSciNet  Google Scholar 

  17. V. B. Matveev and A. O. Smirnov, “On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations,” Lett. Math. Phys., 14, 25–31 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. B. Matveev and A. O. Smirnov, “Simplest trigonal solutions of the Boussinesq and Kadomtsev–Petviashvili equations,” Sov. Phys. Dokl., 32, 202–204 (1987).

    ADS  MATH  Google Scholar 

  19. S. Baldwin, J. C. Eilbeck, J. Gibbons, and Y. Onishi, “Abelian functions for cyclic trigonal curves of genus 4,” J. Geom. Phys., 58, 450–467 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato, “Abelian functions for trigonal curves of genus three,” Int. Math. Res. Notices, 2007, 140 (2007).

    MATH  Google Scholar 

  21. Yu. V. Brezhnev, “Finite-band potentials with trigonal curves,” Theor. Math. Phys., 133, 1657–1662 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. M. Buchstaber, D. V. Leikin, and V. Z. Ènol’skii, “Uniformization of jacobi varieties of trigonal curves and nonlinear differential equations,” Funct. Anal. Appl., 34, 159–171 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Inoue, “The extended Lotka–Volterra lattice and affine Jacobi varieties of spectral curves,” J. Math. Phys., 44, 338–351 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E. Previato, “The Calogero–Moser–Krichever system and elliptic Boussinesq solitons,” in: Hamiltonian Systems, Transformation Groups, and Spectral Transform Methods (Proc. CRM Workshop, Montréal, Canada, 20–26 October 1989, J. Harnad and J. E. Marsden, eds.), CRM, Montréal (1990), pp. 57–67.

    Google Scholar 

  25. E. Previato, “Monodromy of Boussinesq elliptic operators,” Acta Appl. Math., 36, 49–55 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Previato and J.-L. Verdier, “Boussinesq elliptic solitons: The cyclic case,” in: Proc. Indo-French Conference on Geometry (Bombay, India, 1989, S. Ramanan and A. Beauville, eds.), Hindustan Book Agency, Delhi (1993), pp. 173–185.

    Google Scholar 

  27. A. O. Smirnov, “A matrix analogue of Appell’s theorem and reductions of multidimensional Riemann thetafunctions,” Math. USSR-Sb., 61, 379–388 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Airault, H. P. Mckean, and J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem,” Commun. Pure Appl. Math., 30, 95–148 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. R. Dickson, F. Gesztesy, and K. Unterkofler, “A new approach to the Boussinesq hierarchy,” Math. Nachr., 198, 51–108 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Dickson, F. Gesztesy, and K. Unterkofler, “Algebro-geometric solutions of the Boussinesq hierarchy,” Rev. Math. Phys., 11, 823–879 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  31. X. G. Geng, L. H. Wu, and G. L. He, “Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions,” Phys. D, 240, 1262–1288 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. X. G. Geng, L. H. Wu, and G. L. He, “Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy,” J. Nonlinear Sci., 23, 527–555 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. X. G. Geng, Y. Y. Zhai, and H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy,” Adv. Math., 263, 123–153 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Blaszak and K. Marciniak, “R-matrix approach to lattice integrable systems,” J. Math. Phys., 35, 4661–4682 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. X.-B. Hu and Z.-N. Zhu, “Some new results on the Blaszak–Marciniak lattice: Bäcklund transformation and nonlinear superposition formula,” J. Math. Phys., 39, 4766–4772 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. W.-X. Ma and B. Fuchssteiner, “Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations,” J. Math. Phys., 40, 2400–2418 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. X. B. Hu, D. L. Wang, and H. Tam, “Integrable extended Blaszak–Marciniak lattice and another extended lattice with their Lax pairs,” Theor. Math. Phys., 127, 738–743 (2001).

    Article  MATH  Google Scholar 

  38. Z.-N. Zhu, X.Wu,_W. Xue, and Q. Ding, “Infinitely many conservation laws of two Blaszak–Marciniak three-field lattice hierarchies,” Phys. Lett. A, 297, 387–395 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R. Sahadevan and S. Khousalya, “Master symmetries for Volterra equation, Belov–Chaltikian and Blaszak–Marciniak lattice equations,” J. Math. Anal. Appl., 280, 241–251 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York (1994).

    Book  MATH  Google Scholar 

  41. D. Mumford, Tata Lectures on Theta II, Birkhäuser, Boston, Mass. (1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zeng.

Additional information

This research was supported by the National Natural Science Foundation of China (Grant No. 11331008).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 1, pp. 21–47, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Zeng, X. Application of the trigonal curve to the Blaszak–Marciniak lattice hierarchy. Theor Math Phys 190, 18–42 (2017). https://doi.org/10.1134/S0040577917010020

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917010020

Keywords

Navigation