Skip to main content
Log in

Holographic instant conformal symmetry breaking by colliding conical defects

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study instant conformal symmetry breaking as a holographic effect of ultrarelativistic particles moving in the AdS3 space–time. We give a qualitative picture of this effect based on calculating the two-point correlation functions and the entanglement entropy of the corresponding boundary theory. We show that in the geodesic approximation, because of gravitational lensing of the geodesics, the ultrarelativistic massless defect produces a zone structure for correlators with broken conformal invariance. At the same time, the holographic entanglement entropy also exhibits a transition to nonconformal behavior. Two colliding massless defects produce a more diverse zone structure for correlators and the entanglement entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ya. Aref’eva, D. S. Ageev, and M. D. Tikhanovskaya, Theor. Math. Phys., 189, 1660–1672 (2016); arXiv: 1512.03363v1 [hep-th] (2015).

    Article  Google Scholar 

  2. V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Ya. Aref’eva and A. A. Bagrov, Theor. Math. Phys., 182, 1–22 (2015).

    Article  Google Scholar 

  4. V. Balasubramanian, B. D. Chowdhury, B. Czech, and J. de Boer, JHEP, 1501, 048 (2015); arXiv:1406.5859v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  5. I. Arefeva, A. Bagrov, P. Saterskog, and K. Schalm, Phys. Rev. D, 94, 044059; arXiv:1508.04440v1 [hep-th] (2015).

  6. S. Deser, R. Jackiw, and G.’t Hooft, Ann. Phys., 152, 220–235 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  7. G.’t Hooft, Class. Q. Grav., 13, 1023–1039 (1996); arXiv:gr-qc/9601014v1 (1996).

    Article  ADS  Google Scholar 

  8. H.-J. Matschull, Class. Q. Grav., 16, 1069–1095 (1999); arXiv:gr-qc/9809087v3 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Ryu and T. Takayanagi, Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Nishioka, S. Ryu, and T. Takayanagi, J. Phys. A: Math. Theor., 42, 504008 (2009); arXiv:0905.0932v2 [hep-th] (2009).

    Article  Google Scholar 

  11. C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman, JHEP, 1502, 171 (2015); arXiv:1410.1392v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  12. M. Nozaki, T. Numasawa, and T. Takayanagi, JHEP, 1305, 080 (2013); arXiv:1302.5703v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  13. D. Marolf, H. Maxfield, A. Peach, and S. F. Ross, Class. Q. Grav., 32, 215006; arXiv:1506.04128v2 [hep-th] (2015).

  14. H. Casini, H. Liu, and M. Mezei, JHEP, 1607, 077 (2016); arXiv:1509.05044v1 [hep-th] (2015).

    Article  ADS  Google Scholar 

  15. T. Hartman and N. Afkhami-Jeddi, “Speed limits for entanglement,” arXiv:1512.02695v1 [hep-th] (2015).

    Google Scholar 

  16. I. Ya. Aref’eva and M. A. Khramtsov, JHEP, 1604, 121 (2016); arXiv:1601.02008v2 [hep-th] (2016).

    Article  ADS  Google Scholar 

  17. I. Aref’eva, AIP Conf. Proc., 1701, 090001 (2016).

    Article  Google Scholar 

  18. I. Ya. Aref’eva, Theor. Math. Phys., 184, 1239–1255 (2015).

    Article  Google Scholar 

  19. I. Aref’eva, EPJ Web Conf., 125, 01007 (2016).

    Article  Google Scholar 

  20. D. Ageev, EPJ Web Conf., 125, 04007 (2016).

    Article  Google Scholar 

  21. I. Ya. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv:1603.09107v2 [hep-th] (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ageev.

Additional information

This research was performed at the Steklov Mathematical Institute of Russian Academy of Science and supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 3, pp. 389–404, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, D.S., Aref’eva, I.Y. Holographic instant conformal symmetry breaking by colliding conical defects. Theor Math Phys 189, 1742–1754 (2016). https://doi.org/10.1134/S0040577916120072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916120072

Keywords

Navigation