Skip to main content
Log in

Emergence of the giant component in preferential-attachment growing networks

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the percolation transition in evolving scale-free networks. A new node is added at each step and is connected to a random number of old nodes according to the preferential attachment mechanism. We give the critical value of the emergence of the giant component and prove that the transition is of infinite order. We also obtain asymptotic expressions for the cluster size distribution in the subcritical, critical, and supercritical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Barabási and R. Alber, Science, 286, 509–512 (1999); arXiv:cond-mat/9910332v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. E. J. Newman, A. L. Barabasi, and D. J. Watts, The Structure and Dynamics of Networks, Princeton Univ. Press, Princeton, N. J. (2006).

    MATH  Google Scholar 

  3. L. F. Costa, O. N. Oliveira Jr, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, Adv. Phys., 60, 329–412 (2011); arXiv:0711.3199v3 [physicssoc-ph] (2007).

    Article  ADS  Google Scholar 

  4. A. L. Barabási, R. Albert, and H. Jeong, Phys. A, 272, 173–187 (1999); arXiv:cond-mat/9907068v1 [cond-mat. dis-nn] (1999).

    Article  Google Scholar 

  5. P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett., 85, 4629–4632 (2000); arXiv:cond-mat/0005139v2 (2000).

    Article  ADS  Google Scholar 

  6. S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E, 63, 025101 (2001); arXiv:cond-mat/0009065v1 (2000).

    Article  ADS  Google Scholar 

  7. A. Barrat, M. Barthélemy, and A. Vespignani, Phys. Rev. Lett., 92, 228701 (2004); arXiv:cond-mat/0401057v2 (2004).

    Article  ADS  Google Scholar 

  8. R. Albert and A. L. Barabási, Phys. Rev. Lett., 85, 5234–5237 (2000); arXiv:cond-mat/0005085v1 (2000).

    Article  ADS  Google Scholar 

  9. R. Albert and A. L. Barabási, Rev. Modern Phys., 74, 47–97 (2002); arXiv:cond-mat/0106096v1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, Phys. Rev. Lett., 85, 4626–4628 (2000); arXiv:cond-mat/0007048v2 (2000).

    Article  ADS  Google Scholar 

  11. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. Lett., 85, 5468–5471 (2000); arXiv:cond-mat/0007300v2 (2000).

    Article  ADS  Google Scholar 

  12. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Modern Phys., 80, 1275–1335 (2008); arXiv: 0705.0010v6 [cond-matstat-mech] (2007).

    Article  ADS  Google Scholar 

  13. Z. Xu, Y. Higuchi, and C. Hu, Theor. Math. Phys., 172, 901–910 (2012).

    Article  MathSciNet  Google Scholar 

  14. P. Erdôs and A. Rényi, Publ. Math., 6, 290–297 (1959).

    Google Scholar 

  15. P. Erdôs and A. Rényi, Pub. Math. Inst. Hung. Acad. Sci. Ser. A, 5, 17–61 (1960).

    Google Scholar 

  16. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Phys. Rev. E, 64, 041902 (2001); arXiv:cond-mat/0104546v2 (2001).

    Article  ADS  Google Scholar 

  17. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E, 64, 066110 (2001); arXiv:cond-mat/0106141v2 (2001).

    Article  ADS  Google Scholar 

  18. J. Kim, P. L. Krapivsky, B. Kahng, and S. Redner, Phys. Rev. E, 66, 055101 (2002); arXiv:cond-mat/0203167v3 (2002).

    Article  ADS  Google Scholar 

  19. S. Coulomb and M. Bauer, Eur. Phys. J. B, 35, 377–389 (2003); arXiv:cond-mat/0212371v1 (2002).

    Article  ADS  Google Scholar 

  20. P. L. Krapivsky and B. Derrida, Phys. A, 340, 714–724 (2004); arXiv:cond-mat/0408161v1 (2004).

    Article  MathSciNet  Google Scholar 

  21. A. D. Polyanin and V. F. Zaitsev, Handbook on Ordinary Differential Equations [in Russian], Fizmatlit, Moscow (2001); English transl.: Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC Press, Boca Raton (2002).

    MATH  Google Scholar 

  22. G. Polya and G. Latta, Complex Variables, Wiley, New York (1974).

    MATH  Google Scholar 

  23. D. Lancaster, J. Phys. A, 35, 1179–1194 (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Additional information

This research was supported by the National Natural Science Foundation of China (Grant No. 11401368).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 3, pp. 496–507, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, Y. Emergence of the giant component in preferential-attachment growing networks. Theor Math Phys 186, 430–439 (2016). https://doi.org/10.1134/S0040577916030107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916030107

Keywords

Navigation