Skip to main content
Log in

Alternative proof of the a priori tan Θ theorem

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let A be a self-adjoint operator in a separable Hilbert space. We assume that the spectrum of A consists of two isolated components σ0 and σ1 and the set σ1 is in a finite gap of the set σ1. It is known that if V is a bounded additive self-adjoint perturbation of A that is off-diagonal with respect to the partition spec(A) = σ0 ∪ σ1, then for \(\left\| V \right\| < \sqrt 2 d\), where d = dist(σ0, σ1), the spectrum of the perturbed operator L = A+V consists of two isolated parts ω0 and ω1, which appear as perturbations of the respective spectral sets s0 and s1. Furthermore, we have the sharp upper bound ||EA(σ0) - EL(ω0)|| ≤ sin (arctan(||V||/d)) on the difference of the spectral projections EA0)) and EL0)) corresponding to the spectral sets σ0 and ω0 of the operators A and L. We give a new proof of this bound in the case where ||V|| < d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bhatia, C. Davis, and A. McIntosh, Linear Algebra Appl., 52–53, 45–67 (1983).

    Article  MathSciNet  Google Scholar 

  2. C. Davis and W. M. Kahan, SIAM J. Numer. Anal., 7, 1–46 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).

    Book  MATH  Google Scholar 

  4. S. Albeverio and A. K. Motovilov, “Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian,” arXiv:1410.3231 (2014).

    Google Scholar 

  5. S. Albeverio and A. K. Motovilov, Compl. Anal. Oper. Theory, 7, 1389–1416 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Seelmann, “Perturbation theory for spectral subspaces,” Doctoral dissertation, http://ubm.opus.hbznrw.de/volltexte/2014/3862/, Johannes Gutenberg University, Mainz (2014).

    Google Scholar 

  7. Yu. A. Kuperin, K. A. Makarov, S. P. Merkur’ev, and A. K. Motovilov, Soviet J. Nucl. Phys., 48, 224–231 (1989).

    MathSciNet  Google Scholar 

  8. Y. A. Kuperin, K. A. Makarov, S. P. Merkuriev, A. K. Motovilov, and B. S. Pavlov, J. Math. Phys., 31, 1681–1690 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. K. Motovilov, J. Math. Phys., 36, 6647–6664 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. K. Motovilov, J. Math. Phys., 32, 3509–3518 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. H. J. McKellar and C. M. McKay, Australian J. Phys., 36, 607–616 (1983).

    Article  ADS  Google Scholar 

  12. R. Mennicken and A. A. Shkalikov, Math. Nachr., 179, 259–273 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. S. Markus and V. I. Matsaev, Funct. Anal. Appl., 9, 73–74 (1975).

    Article  MATH  Google Scholar 

  14. H. Langer, A. Markus, V. Matsaev, and C. Tretter, Linear Algebra Appl., 330, 89–112 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London (2008).

    Book  MATH  Google Scholar 

  16. S. Albeverio, K. A. Makarov, and A. K. Motovilov, Canad. J. Math., 55, 449–503 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation: A geometric approach,” in: Advances in Differential Equations and Mathematical Physics (Contemp. Math., Vol. 327 Yu. Karpeshina, G. Stolz, R. Weikard, and Y. Zeng, eds.), Amer. Math. Soc., Providence, R. I. (2003), pp. 181–198.

    Article  MathSciNet  Google Scholar 

  18. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, Integral Equations Operator Theory, 51, 121–140 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. K. Motovilov and A. V. Selin, Integral Equations Operator Theory, 56, 511–542 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Albeverio amd A. K. Motovilov, Integral Equations Operator Theory, 73, 413–430 (2012).

    Article  MathSciNet  Google Scholar 

  21. A. Seelman, Integral Equations Operator Theory, 79, 579–597 (2014).

    Article  MathSciNet  Google Scholar 

  22. Y. Nakatsukasa, Linear Algebra Appl., 436, 1528–1534 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space [in Russian], Leningrad Univ. Press, Leningrad (1980); English transl. (Math. Its Appl. Sov. Ser., Vol. 5), Dordrecht, Boston, Mass. (1987).

    Google Scholar 

  24. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, “A generalization of the tan 2 Θ theorem,” in: Current Trends in Operator Theory and Its Applications (Oper. Theory Adv. Appl., Vol. 149, J. A. Ball, W. J. Helton, M. Klaus, and L. Rodman, eds.), Birkhäuser, Basel (2004), pp. 349–372.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Motovilov.

Additional information

This research was supported in part by the Russian Foundation for Basic Research, the Deutsche Forschungsgemeinschaft (DFG), and St. Petersburg State University (Grant No. 11.38.241.2015).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 1, pp. 101–112, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motovilov, A.K. Alternative proof of the a priori tan Θ theorem. Theor Math Phys 186, 83–92 (2016). https://doi.org/10.1134/S0040577916010074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916010074

Keywords

Navigation