Skip to main content
Log in

Coronae–Sources of Young Volcanism on Venus: Topographic Features and Estimates of Productivity

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Our study of the spatial and genetic relationship between coronae and lobate plains allows us to draw two important conclusions. (1) About 17% of all volcanic coronae of Venus are sources (coronae–sources) of young lavas that form lobate plains of the Atlian period. A small portion of coronae–sources in the total population of coronae reflects the decrease in the formation rate of mantle diapirs. (2) The area of lobate plains associated with a particular corona and the area of the corona itself are negatively correlated. These relationships allow the existence of only two models for the final stages in the evolution of mantle diapirs. Having analyzed both of these models, we suppose that, during the Atlian period in the geologic history of Venus, either a single zone of neutral buoyancy existed or the lithosphere base was located at approximately the same level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Aittola, M. and Kostama, V.-P., Venusian novae and arachnoids: Characteristics, differences and the effect of the geological environment, Planet. Space Sci., 2001, vol. 48, pp. 1479–1489.

    Article  ADS  Google Scholar 

  2. Aittola, M. and Raitala, J., Venusian novae: Classification and associations to volcano-tectonic structures, Sol. Syst. Res., 2007, vol. 41, no. 5, pp. 395–412.

    Article  ADS  Google Scholar 

  3. Barsukov, V.L., Basilevsky, A.T., Burba, G.A., Bobinna, N.N., Kryuchkov, V.P., Kuzmin, R.O., Nikolaeva, O.V., Pronin, A.A., Ronca, L.B., Chernaya, I.M., and 20 co-authors, The geology and geomorphology of the Venus surface as revealed by radar images obtained by Venera 15 and 16, J. Geophys. Res., 1986, vol. 91, no. B4, pp. D378–D398.

    Article  Google Scholar 

  4. Basilevsky, A.T. and Head, J.W., Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas, Earth, Moon Planets, 1995, vol. 66, pp. 285–336.

    Article  ADS  Google Scholar 

  5. Basilevsky, A.T. and Head, J.W., The geologic history of Venus: A stratigraphic view, J. Geophys. Res., 1998, vol. 103, pp. 8531–8544.

    Article  ADS  Google Scholar 

  6. Basilevsky, A.T. and Head, J.W., Geologic units on Venus: Evidence for their global correlation, Planet. Space Sci., 2000, vol. 48, pp. 75–111.

    Article  ADS  Google Scholar 

  7. Basilevsky, A.T. and Head, J.W., Beta regio, Venus: Evidence for uplift, rifting, and volcanism due to a mantle plume, Icarus, 2007, vol. 192, pp. 167–186.

    Article  ADS  Google Scholar 

  8. Basilevsky, A.T. and Raitala, J., Morphology of selected novae (astra) from the analysis of Magellan images at Venus, Planet. Space Sci., 2002, vol. 50, pp. 21–39.

    Article  ADS  Google Scholar 

  9. Basilevsky, A.T., Pronin, A.A., Ronca, L.B., Kryuchkov, V.P., Sukhanov, A.L., and Markov, M.S., Styles of tectonic deformations on Venus: Analysis of Venera 15 and 16 data, Proc. 16th Lunar and Planet. Sci. Conf. Part 2, J. Geophys. Res., 1986, vol. 91, no. B4, pp. D339–D411.

    Article  Google Scholar 

  10. Basilevsky, A.T., Aittola, M., Raitala, J., and Head, J.W., Venus astra/novae: Estimates of the absolute time duration of their activity, Icarus, 2009, vol. 203, pp. 337–351.

    Article  ADS  Google Scholar 

  11. Campbell, D.B., Stacy, N.J.S., Newman, W.I., Arvidson, R.E., Jones, E.M., Musser, G.S., Roper, A.Y., and Schaber, C., Magellan observations of extended impact crater related features on the surface of Venus, J. Geophys. Res., 1992, vol. 97, no. E10, pp. 16.249–16.277.

  12. Crumpler, L.S. and Aubele, J., Volcanism on Venus, in Encyclopedia of Volcanoes, Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., and Stix, J., Eds., Academic Press, 2000, pp. 727–770.

  13. Davaille, A., Smrekar, S.E., and Tomlinson, S., Experimental and observational evidence for plume-induced subduction on Venus, Nat. Geosci., 2017, vol. 10, no. 5, pp. 349–355.

    Article  ADS  Google Scholar 

  14. Ernst, R.E., Grosfils, E.B., and Mège, D., Giant dike swarms: Earth, Venus and Mars, Ann. Rev. Earth Planet. Sci., 2001, vol. 29, pp. 489–534.

    Article  ADS  Google Scholar 

  15. Grindrod, P.M. and Hoogenboom, T., Coronae on Venus, Astron. Geophys., 2006, vol. 47, pp. 3.16–3.21.

  16. Grosfils, E. and Head, J.W., The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state, Geophys. Res. Lett., 1994, vol. 21, pp. 701–704.

    Article  ADS  Google Scholar 

  17. Guseva, E.N. and Ivanov, M.A., Coronae of Venus: Geological, topographic and morphometric characteristics, Sol. Syst. Res., 2022, vol. 56, no. 2, pp. 76–83.

    Article  ADS  Google Scholar 

  18. Guseva, E.N. and Ivanov, M.A., Spatial and genetic relationships of coronae, lobate plains and rift zones of Venus, Sol. Syst. Res., 2023, vol. 57, no. 2, 112–121.

    Article  ADS  Google Scholar 

  19. Head, J.W. and Wilson, L., Magma reservoirs and neutral buoyancy zones on Venus: implications for the formation and evolution of volcanic landforms, J. Geophys. Res., 1992, vol. 97, no. E3, pp. 3877–3903.

    Article  ADS  Google Scholar 

  20. Herrick, R.R., Small mantle upwellings are pervasive on Venus and Yarth, Geophys. Res. Lett., 1999, vol. 26, no. 6, pp. 803–806.

    Article  ADS  Google Scholar 

  21. Herrick, R.R. and Hensley, S., Surface changes observed on a Venusian volcano during the Magellan mission, Science, 2023, vol. 379, no. 6638, pp. 1205–1208.

    Article  ADS  Google Scholar 

  22. Ivanov, M.A. and Head, J.W., Geology of Venus: Mapping of a global geotraverse at 30° N latilude, J. Geophys. Res., 2001, vol. 106, no. E8, pp. 17515–17566.

    Article  ADS  Google Scholar 

  23. Ivanov, M.A. and Head, J.W., The Lada Terra rise and Quetzalpetlatl Corona: A region of long-lived mantle upwelling and recent volcanic activity on Venus, Planet. Space Sci., 2010, vol. 58, pp. 1880–1894.

    Article  ADS  Google Scholar 

  24. Ivanov, M.A. and Head, J.W., Global geological map of Venus, Planet. Space Sci., 2011, vol. 59, pp. 1559–1600.

    Article  ADS  Google Scholar 

  25. Ivanov, M.A. and Head, J.W., The history of volcanism on Venus, Planet. Space Sci., 2013, vol. 84, pp. 66–92.

    Article  ADS  Google Scholar 

  26. Ivanov, M.A. and Head, J.W., The history of tectonism on Venus: A stratigraphic analysis, Planet. Space Sci., 2015, vol. 113, pp. 10–32.

    Article  ADS  Google Scholar 

  27. Janes, D.M., Squyres, S.W., Bindschadler, D.L., Baer, G., Schubert, G., Sharpton, V.L., and Stofan, E.R., Geophysical models for the formation and evolution of coronae on Venus, J. Geophys. Res., 1992, vol. 97, no. E10, pp. 16055–16068.

    Article  ADS  Google Scholar 

  28. Jellinek, A.M., Lenardic, A., and Manga, M., The influence of interior mantle temperature on the structure of plumes: Heads for Venus, tails for the Earth, Geophys. Res. Lett., 2002, vol. 29, no. 11, pp. 27–1.

    Article  Google Scholar 

  29. Johnson, C.L. and Richards, M.A., A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus, J. Geophys. Res., 2003, vol. 108, no. E6, pp. 12-1–12-18.

  30. Koch, D.M. and Manga, M., Neutrally buoyant diapirs: A model for Venus coronae, Geophys. Res. Lett., 1996, vol. 23, no. 3, pp. 225–228.

    Article  ADS  Google Scholar 

  31. Konopliv, A.S., Banerdt, W.B., and Sjogren, W.L., Venus gravity: 180th degree and order model, Icarus, 1999, vol. 139, pp. 3–18.

    Article  ADS  Google Scholar 

  32. Krassilnikov, A.S. and Head, J.W., Novae on Venus: Geology, classification, and evolution, J. Geophys. Res., 2003, vol. 108, no. E9, p. 5108.

    Article  Google Scholar 

  33. Lopez, I., Marquez, A., and Oyarzun, R., Are coronae restricted to Venus?: Corona-like tectonovolcanic structures on Earth, Earth, Moon Planets, 1999, vol. 77, pp. 125–137.

    Article  ADS  Google Scholar 

  34. McGill, G.E., Steenstrup, S.J., Barton, C., and Ford, P.G., Continental rifting and the origin of Beta Regio, Venus, Geophys. Res. Lett., 1981, vol. 8, no. 7, pp. 737–740.

    Article  ADS  Google Scholar 

  35. Nikishin, A.M., Hot spot tectonics on Venus: Implications for rifting and doming, Lunar Planet. Sci. Conf., 1986, vol. 17, pp. 615–616.

  36. Nikishin, A.M., Tectonics of Venus: A review, Earth, Moon Planets, 1990, vols. 50/51, pp. 101–125.

    Article  ADS  Google Scholar 

  37. Phillips, R.J., Raubertas, R.F., Arvidson, R.E., Sarkar, I.C., Herrick, R.R., Izenberg, N., and Grimm, R.E., Venus impact craters and resurfacing history, J. Geophys. Res., 1992, vol. 97, no. E10, pp. 15923–15948.

    Article  ADS  Google Scholar 

  38. Phillips, R.J. and Hansen, V.L., Tectonic and magmatic evolution of Venus, Ann. Rev. Earth Planet. Sci., 1994, vol. 22, pp. 597–654.

    Article  ADS  Google Scholar 

  39. Pronin, A.A. and Stofan, E.R., Coronae on Venus: Morphology and distribution, Icarus, 1990, vol. 87, pp. 452–474.

    Article  ADS  Google Scholar 

  40. Rathbun, J.A., Janes, D.M., and Squyres, S.W., Formation of Beta Regio, Venus: Results from measuring strain, J. Geophys. Res., 1999, vol. 104, pp. 1917–1927.

    Article  ADS  Google Scholar 

  41. Senske, D.A., Head, J.W., Stofan, E.R., and Campbell, D.B., Geology and structure of Beta Regio, Venus: Results from Arecibo radar imaging, Geophys. Res. Lett., 1991, vol. 18, no. 6, pp. 1159–1162.

    Article  ADS  Google Scholar 

  42. Senske, D.A., Schaber, G.G., and Stofan, E.R., Regional topographic rises on Venus: Geology of western Eistla Regio and comparison to Atla Regio and Beta Regio, J. Geophys. Res., 1992, vol. 97, pp. 13395–13420.

    Article  ADS  Google Scholar 

  43. Shalygin, E.V., Markiewicz, W.J., Basilevsky, A.T., Titov, D.V., Ignatiev, N.I., and Head, J.W., Active volcanism on Venus in the Ganiki Chasma rift zone, J. Geophys. Res. Lett., 2015, vol. 42, pp. 4762–4769.

    Article  ADS  Google Scholar 

  44. Sjogren, W.L., Bills, B.G., Birkeland, P.B., Esposito, P.B., Konopliv, A.R., Mottinger, N.A., Ritke, S.J., and Phillips, R.J., Venus gravity anomalies and their correlations with topography, J. Geophys. Res., 1983, vol. 88, no. B2, pp. 1119–1128.

    Article  ADS  Google Scholar 

  45. Smrekar, S.E. and Parmentier, E.M., The interaction of mantle plumes with surface thermal and chemical boundary layers: Applications to hotspots on Venus, J. Geophys. Res., 1996, vol. 101, no. B3, pp. 5397–5410.

    Article  ADS  Google Scholar 

  46. Smrekar, S.E. and Stofan, E.R., Corona formation and heat loss on Venus by coupled upwelling and delamination, Science, 1997, vol. 277, pp. 1289–1294.

    Article  ADS  Google Scholar 

  47. Smrekar, S.E., Stofan, E.R., and Kiefer, W.S., Large volcanic rises on Venus, in Venus II, Bougher S.W., Hunten D.M., and Phillips, R.J., Eds., Tucson, AZ: Univ. Arizona Press, 1997, pp. 845–878.

    Google Scholar 

  48. Squyres, S.W., Janes, D.M., Baer, G., Bindschandler, D.L., Shubert, G., Sharpton, V.L., and Stofan, E.R., The morphology and evolution of coronae on Venus, J. Geophys. Res., 1992, vol. 97, no. E8, pp. 13611–13634.

    Article  ADS  Google Scholar 

  49. Stofan, E.R. and Smrekar, S.E., Large topographic rises, coronae, large flow field, and large volcanoes on Venus: Evidence for mantle plumes?, Geol. Soc. Am. Spec. Paper, 2005, vol. 388, pp. 841–861.

    Google Scholar 

  50. Stofan, E.R., Sharpton, V.L., Shubert, G., Baer, G., Bindschandler, D.L., Janes, D.M., and Squyres, S.W., Global distribution and characteristics of coronae and related features on Venus: Implication for origin and relation to mantle processes, J. Geophys. Res., 1992, vol. 97, no. E8, pp. 13347–13378.

    Article  ADS  Google Scholar 

  51. Stofan, E.R., Smrekar, S.E., Bindschadler, D.L., and Senske, D.A., Large topographic rises on Venus: Implications for mantle upwelling, J. Geophys. Res., 1995, vol. 100, no. E11, pp. 23317–23327.

    Article  ADS  Google Scholar 

  52. Stofan, E.R., Smrekar, S.E., Tapper, S.W., Guest, J.E., and Grindrod, P.M., Preliminary analysis of an expanded corona database for Venus, Geophys. Res. Lett., 2001, vol. 28, pp. 4267–4270.

    Article  ADS  Google Scholar 

  53. Vezolainen, A.V., Solomatov, V.S., Basilevsky, A.T., and Head, J.W., Uplift of Beta Regio: Three-dimensional model, J. Geophys. Res., 2004, vol. 109, p. E08007.

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out under the State Assignment of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Guseva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Petrova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, E.N., Ivanov, M.A. Coronae–Sources of Young Volcanism on Venus: Topographic Features and Estimates of Productivity. Sol Syst Res 58, 78–87 (2024). https://doi.org/10.1134/S0038094624010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094624010039

Keywords:

Navigation