Skip to main content
Log in

Study of Small Bodies of the Solar System: Odyssey-Asteroids Project

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper discusses priority scientific tasks related to the study of small bodies in the Solar System, identifies the most promising objects for investigation from a spacecraft on a flyby trajectory and the sample return mission, and develops proposals for the preliminary composition of scientific instruments for remote asteroid research methods. A long-term and phased Russian scientific program for studying small Solar System bodies using spacecraft with electric propulsion has been proposed. The project is designed in such a way as to explore the largest number of scientifically interesting asteroids using a smaller number of spacecraft. A design concept for a small spacecraft to investigate near-Earth asteroids on a flyby trajectory and a main spacecraft for studying metallic asteroids in the Main Belt and sample sample return has been developed. A ballistic analysis of the flyby of five near-Earth asteroids and three metallic asteroids in the Main Belt is presented, as well as a ballistic analysis of the sample return mission from a Main Belt asteroid. The option of sample return using the nuclear tug Zevs is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Afanas’ev, I., The tug sets course, Russkii kosmos, 2022, no. 4, pp. 10–15.

  2. Baker, J., Bizzarro, M., Wittig, N., Connelly, J., and Haack, H., Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites, Nature, 2005, vol. 436, pp. 1127–1131.

    Article  ADS  Google Scholar 

  3. Belskaya, I.N. and Lagerkvist, C.I., Physical properties of M class asteroids, Planet. Space Sci., 1996, vol. 44, pp. 783–794.

    Article  ADS  Google Scholar 

  4. Belton, M.J.S., Veverka, J., Thomas, P., Hefenstein, P., Simonelli, D., Chapman, C., Davies, M.E., Greeley, R., Greenberg, R., Head, J., Murchie, S., Kiaasen, K., Johnson, T.V., McEwen, A., Morrison, D., Neukum, G., Fanale, F., Anger, C., Carr, M., and Pilcher, C., Galileo encounter with 951 Gaspra: First pictures of an asteroid, Science, 1992, vol. 257, pp. 1647–1652.

    Article  ADS  Google Scholar 

  5. Belton, M.J.S., Chapman, C.R., Veverka, J., Klaasen, K.P., Harch, A., Greeley, R., Greenberg, R., Head, J.W. III, McEwen, A., Morrison, D., Thomas, P.C., Davies, M.E., Carr, M.H., Neukum, G., Fanale, F.P., Davis, D.R., Anger, C., Gierasch, P.J., Ingersoll, A.P., and Pilcher, C.B., First images of asteroid 243 Ida, Science, 1994, vol. 265, pp. 1543–1547.

    Article  ADS  Google Scholar 

  6. Belton, M.J.S., Chapman, C.R., Klaasen, K.P., Harch, A.P., Thomas, P.C., Veverka, J., McEwen, A.S., and Pappalardo, R.T., Galileo’s encounter with 243 Ida: An overview of the imaging experiment, Icarus, 1996, vol. 120, pp. 1–19.

    Article  ADS  Google Scholar 

  7. Bizzarro, M., Baker, J.A., Haack, H., and Lundgaard, K.L., Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry, Astrophys. J., 2005, vol. 632, pp. L41–L44.

    Article  ADS  Google Scholar 

  8. Bottke, W.F., Nesvorny, D., Grimm, R.E., Morbidelli, A., and O’Brien, D.P., Iron meteorites as remnants of planetesimals formed in the terrestrial planet region, Nature, 2006, vol. 439, pp. 821–824.

    Article  ADS  Google Scholar 

  9. Britt, D.T. and Consolmagno, G.J., The porosity of dark meteorites and the structure of low-albedo asteroids, Icarus, 2000, vol. 146, pp. 213–219.

    Article  ADS  Google Scholar 

  10. Burbine, T.H., Forging asteroid-meteorite relationships through reflectance spectroscopy, PhD Dissertation, Massachusetts Institute of Technology, 2000.

  11. Burbine, T.H. and Binzel, R.P., Small main-belt asteroid spectroscopic survey in the near-infrared, Icarus, 2002, vol. 159, pp. 468–499.

    Article  ADS  Google Scholar 

  12. Burbine, T.H., McCoy, T.J., Meibom, A., Gladman, B., and Keil, K., Meteoritic parent bodies: Their number and identification, in Asteroids III, Bottke, W.F., Cellino, A., Paolicchi, P., and Binzel, R., Eds., Tucson: Univ. Arizona Press, 2002, pp. 653–667.

    Google Scholar 

  13. Bus, S.J. and Binzel, R.P., Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy, Icarus, 2002, vol. 158, pp. 146–177.

    Article  ADS  Google Scholar 

  14. Chapman, C.R., S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s flybys of Gaspra and Ida, Meteoritics, 1996, vol. 31, pp. 699–725.

    Article  Google Scholar 

  15. Chauvineau, B., Mignard, F., and Farinella, P., The lifetime of binary asteroids vs gravitational encounters and collisions, Icarus, 1991, vol. 94, pp. 299–310.

    Article  ADS  Google Scholar 

  16. Cheng, A.F., Agrusa, H.F., Barbee, B.W., Meyer, A.J., Farnham, T.L., Raducan, S.D., Richardson, D.C., Dotto, E., Zinzi, A., Corte, V.D., Statler, T.S., Chesley, S., Naidu, S.P., Hirabayashi, M., Li, J.-Y., Egg, S., and 69 co-authors, Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos, Nature, 2023. https://doi.org/10.1038/s41586-023-05878-z

  17. CNEOS. https://cneos.jpl.nasa.gov/about/cneos.html.

  18. CNEOS JPL Discovery Statistics, 2023. https://cneos.jpl.nasa.gov/stats/size.html.

  19. CNEOS JPL NEO Groups. 2023. https://cneos.jpl.nasa.gov/about/neo_groups.html.

  20. Coradini, A., Capaccioni, F., Erard, S., Arnold, G., De Sanctis, M.C., Filacchione, G., Tosi, F., Barucci, M.A., Capria, M.T., Ammannito, E., and 39 co-authors, The surface composition and temperature of asteroid 21 Lutetia as observed by ROSETTA/VIRTIS, Science, 2011, vol. 334, no. 6055, pp. 492–494.

    Article  ADS  Google Scholar 

  21. Daly, R.T., Ernst, C.M., Barnouin, O.S., Chabot, N.L., Rivkin, A.S., Cheng, A.F., Adams, E.Y., Agrusa, H.F., Abel, E.D., Alford, A.L., and 91 co-authors, Successful kinetic impact into an asteroid for planetary defense, Nature, 2023. https://doi.org/10.1038/s41586-023-05810-5

  22. De Sanctis, M.C., Coradini, A., Ammannito, E., Filacchione, G., Capria, M.T., Fonte, S., Magni, G., Barbis, A., Bini, A., Dami, M., Ficai-Veltroni, I., Preti, G., and VIR Team, The VIR spectrometer, Space Sci. Rev., 2011, vol. 163, pp. 329–369.

    Article  ADS  Google Scholar 

  23. Fish, R.A., Goles, G.G., and Anders, E., The record in the meteorites. III. On the development of meteorites in asteroidal bodies, Astrophys. J., 1960, vol. 132, pp. 243–258.

    Article  ADS  Google Scholar 

  24. Fornasier, S., Clark, B.E., and Dotto, E., Spectroscopic survey of X-type asteroids, Icarus, 2011, vol. 214, pp. 131–146.

    Article  ADS  Google Scholar 

  25. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ikeda, H., Kominato, T., Miyamoto, H., Nakamura, A.M., Nakamura, R., Sasaki, S., and Uesugi, K., The rubble-pile asteroid Itokawa as observed by Hayabusa, Science, 2006, vol. 312, pp. 1330–1334.

    Article  ADS  Google Scholar 

  26. Goldstein, J.I. and Short, J.M., The iron meteorites, their thermal history and parent bodies, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 1733–1770.

    Article  ADS  Google Scholar 

  27. Gordon, R.B., Mechanical properties of iron meteorites and the structure of their parent planets, J. Geophys. Res., 1970, vol. 75, pp. 439–447.

    Article  ADS  Google Scholar 

  28. Graykowski, A., Lambert, R.A., Marchis, F., Cazeneuve, D., Dalba, P.A., Esposito, T.M., Peluso, D.C., Sgro, L.A., Blaclard, G., Borot, A., Malvache, A., Marfisi, L., Powell, T.M., and 31 co-authors, Light curves and colors of the ejecta from Dimorphos after the DART impact, Nature, 2023. https://doi.org/10.1038/s41586-023-05852-9

  29. Hayes-Gehrke, M., Khan Raiden, Shijia Liao, Siegel Tucker, Vincent Jorin, DeBoy Stephen, Guenterberg Evan, Hamilton Drew, Hopkins Brain, Katz Ilan, Sargent Robert, Storey Cameron, Zhang Gary, Brincat Stephen, M., and Mifsud Martin, Lightcurve analysis of asteroid 2685 Masursky, Minor Planet Bull., 2023, vol. 50, no. 1, p. 11.

    ADS  Google Scholar 

  30. Hillier, J.K., Bauer, J.M., and Buratti, B.J., Photometric modeling of asteroid 5535 Annefrank from stardust observations, Icarus, 2011, vol. 211, pp. 546–552.

    Article  ADS  Google Scholar 

  31. IAU Minor Planet Center, 2023. https://www.minorplanetcenter.net/.

  32. Jorda, L., Lamy, P.L., Gaskell, R.W., Kaasalainen, M., Groussin, O., Besse, S., and Faury, G., Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations, Icarus, 2012, vol. 221, pp. 1089–1100.

    Article  ADS  Google Scholar 

  33. Kleine, T., Mezger, K., Palme, H., and Scherer, E., Tungsten isotopes provide evidence that core formation in some asteroids predates the accretion of chondrite parent bodies, 36th Lunar and Planet. Sci. Conf., Houston, 2005, abstract #1431.

  34. Konstantinov, M.S. and Min Thein, Analysis of complicated flight schemes to Saturn with gravity assists and deep space maneuvers, Tr. Mosk. Aviats. Inst., 2012, no. 52. http://trudymai.ru/published.php?ID=29458.

  35. Krinov, E.L., Osnovy meteoritiki (Basics of Meteoritics), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1955.

  36. Lauretta, D.S., Della Giustina, D.N., Bennett, C.A., Golish, D.R., Becker, K.J., Balram-Knutson, S.S., Barnouin, O.S., Becker, T.L., Bottke, W.F., Boynton, W.V., Campins, H., Clark, B.E., Connolly, H.C., Jr., Drouet D’aubigny, C.Y., Dworkin, J.P., Emery, J.P., Enos, H.L., Hamilton, V.E., Hergenrother, C.W., Howell, E.S., Izawa, M.R.M., Kaplan, H.H., Nolan, M.C., Rizk, B., Roper, H.L., Scheeres, D.J., Smith, P.H., Walsh, K.J., Wolner, C.W.V., and The OSIRIS-REx Team, The unexpected surface of asteroid (101955) Bennu, Nature, 2019, vol. 568, pp. 55–60.

    Article  ADS  Google Scholar 

  37. Lohr, D.A., Zanetti, L.J., Anderson, B.J., Potemra, T.A., Hayes, J.R., Gold, R.E., Henshaw, R.M., Mobley, F.F., Holland, D.B., Acuna, M.H., and Scheifele, J.L., NEAR magnetic field investigation, instrumentation, spacecraft magnetics and data access, Space Sci. Rev., 1997, vol. 82, pp. 255–281.

    Article  ADS  Google Scholar 

  38. Lovering, J.F., Differentiation in the iron-nickel core of a parent meteorite body, Geochim. Cosmochim. Acta, 1957, vol. 12, pp. 238–252.

    Article  ADS  Google Scholar 

  39. Lupishko, D.F. and Belskaya, I.N., On the surface composition of the M-type asteroids, Icarus, 1989, vol. 78, pp. 395–401.

    Article  ADS  Google Scholar 

  40. Marchi, S., Raponi, A., Prettyman, T.H., De Sanctis, M.C., Castillo-Rogez, J., Raymond, C.A., Ammannito, E., Bowling, T., Ciarniello, M., Kaplan, H., Palomba, E., Russell, C.T., Vinogradoff, V., and Yamashita, N., An aqueously altered carbon-rich Ceres, Nat. Astron., 2019, vol. 3, pp. 140–145.

    Article  ADS  Google Scholar 

  41. Markowski, A., Quitte, G., Kleine, T., and Halliday, A.N., Tungsten isotopic constraints on the formation and evolution of iron meteorite parent bodies, 36th Lunar and Planet. Sci. Conf., Houston, 2005, Abstract #1308.

  42. Morbidelli, A., Bottke, W.F., Jr., Froeschlé, Ch., and Michel, P., Origin and evolution of near-Earth objects, in Asteroids III, Bottke, W.F., Jr., , Eds., Tucson: Univ. Arizona Press, 2002, pp. 409–422.

    Google Scholar 

  43. More, J.J., Sorensen, D.C., Hillstro, K.E., and Garbow, B.S., The MINPACK project, Sources Dev. Math. Softw., 1984, pp. 88–111.

  44. Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., Sakatani, N., Honda, R., Hirata, N., Kikuchi, H., Yamada, M., and 85 co-authors, Sample collection from asteroid (162173) Ryugu by Hayabusa 2: Implications for surface evolution, Science, 2020, vol. 368, pp. 654–659.

    Article  ADS  Google Scholar 

  45. Mothe-Diniz, T., Carvano, J.M., and Lazzaro, D., Distribution of taxonomic classes in the main belt of asteroids, Icarus, 2003, vol. 162, pp. 10–21.

    Article  ADS  Google Scholar 

  46. Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M.E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S.A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M., and Kawaguchi, J., Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites, Science, 2011, vol. 333, pp. 1113–1116.

    Article  ADS  Google Scholar 

  47. Naraoka, H., Takano, Y., Dworkin, J.P.ObaY., Hamase, K., Furusho, A., Ogawa, N.O., Hashiguchi, M., Fukushima, K., Aoki, D., and 105 co-authors, Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu, Science, 2023, vol. 379, no. 6634. https://doi.org/10.1126/science.abn9033

  48. Noguchi, T., Nakamura, T., Kimura, M., Zolensky, M.E., Tanaka, M., Hashimoto, T., Konno, M., Nakato, A., Ogami, T., Fujimura, A., Abe, M., Yada, T., Mukai, T., Ueno, M., Okada, T., Shirai, K., Ishibashi, Y., and Okazaki, R., Incipient space weathering observed on the surface of Itokawa dust particles, Science, 2011, vol. 333, pp. 1121–1125.

    Article  ADS  Google Scholar 

  49. Oba, Y., Koga, T., Takano, Y., Ogawa, N.O., Ohkouchi, N., Sasaki, K., Sato, H., Glavin, D.P., Dworkin, J.P., Naraoka, H., 22 co-authors, and Hayabusa2-initial-analysis SOM team, Uracil in the carbonaceous asteroid (162173) Ryugu, Nat. Commun., 2023, vol. 14, p. 1292. https://doi.org/10.1038/s41467-023-36904-3

    Article  ADS  Google Scholar 

  50. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1976.

  51. Roatsch, Th., Kersten, E., Matz, K.-D., Preusker, F., Scholten, F., Jaumann, R., Raymond, C.A., and Russell, C.T., High resolution Vesta High Altitude Mapping Orbit (HAMO) atlas derived from Dawn framing camera images, Planet. Space Sci., 2012, vol. 73, pp. 283–286.

    Article  ADS  Google Scholar 

  52. Roatsch, Th., Kersten, E., Matz, K.-D., Preusker, F., Jaumann, R., Raymond, C.A., and Russell, C.T., High-resolution Vesta Low Altitude Mapping Orbit atlas derived from dawn framing camera images, Planet. Space Sci., 2013, vol. 85, pp. 293–298.

    Article  ADS  Google Scholar 

  53. Russell, C.T., Raymond, C.A., Coradini, A., McSween, H.Y., Zuber, M.T., Nathues, A., De Sanctis, M.C., Jaumann, R., Konopliv, A.S., Preusker, F., Asmar, S.W., Park, R.S., Gaskell, R., Keller, H.U., Mottola, S., Roatsch, T., Scully, J.E.C., Smith, D.E., Tricarico, P., Toplis, M.J., Christensen, U.R., Feldman, W.C., Lawrence, D.J., McCoy, T.J., Prettyman, T.H., Reedy, R.C., Sykes, M.E., and Titus, T.N., Dawn at Vesta testing the protoplanetary paradigm, Science, 2012, vol. 336, pp. 684–686.

    Article  ADS  Google Scholar 

  54. Russell, C.T., Raymond, C.A., Ammannito, E., Buczkowski, D.L., De Sanctis, M.C., Hiesinger, H., Jaumann, R., Konopliv, A.S., McSween, H.Y., Nathues, A., Park, R.S., Pieters, C.M., Prettyman, T.H., McCord, T.B., McFadden, L.A., Mottola, S., Zuber, M.T., Joy, S.P., Polanskey, C., Rayman, M.D., Castillo-Rogez, J.C., Chi, P.J., Combe, J.P., Ermakov, A., Fu, R.R., Hoffmann, M., Jia, Y.D., King, S.D., Lawrence, D.J., Li, J.Y., Marchi, S., Preusker, F., Roatsch, T., Ruesch, O., Schenk, P., Villarreal, M.N., and Yamashita, N., Dawn arrives at Ceres: Exploration of a small volatile-rich world, Science, 2016, vol. 353, pp. 1008–1010.

    Article  ADS  Google Scholar 

  55. Scott, E.R.D. and Wasson, J.T., Classification and properties of iron meteorites, Rev. Geophys. Space Phys., 1975, vol. 13, pp. 527–546.

    Article  ADS  Google Scholar 

  56. Scott, E.R.D., Primary fractionation of elements among iron meteorites, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 1447–1458.

    Article  ADS  Google Scholar 

  57. Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., and Mueller, M., A radar survey of M- and X‑class asteroids. II. Summary and synthesis, Icarus, 2010, vol. 208, pp. 221–237.

    Article  ADS  Google Scholar 

  58. Sierks, H., Keller, H.-U., Jaumann, R., Michalik, H., Behnke, T., Bubenhagen, F., Buttner, I., Carsenty, U., Christensen, U., Enge, R., Fiethe, B., Gutierez, MarquesP., Hartwig, H., Kruger, H., Kühne, W., Maue, T., Mottola, S., Nathues, A., Reiche, K.-U., Richards, M.L., Roatsch, T., Schroder, S.E., Szemerey, I., and Tschnetscher, M., The Dawn Framing Camera, Space Sci. Rev., 2011, vol. 163, pp. 263–327.

    Article  ADS  Google Scholar 

  59. Simon, A.A., Kaplan, H.H., Hamilton, V.E., Lauretta, D.S., Campins, H., Emery, J.P., Barucci, M.A., DellaGiustina, D.N., Reuter, D.C., Sandford, S.A., Golish, D.R., Lim, L.F., Ryan, A., Rozitis, B., and Bennett, C.A., Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu, Science, 2020, vol. 370, no. 6517, pp. 1–8.

    Article  Google Scholar 

  60. Slyuta, E.N., Physicomechanical properties and gravitational deformation of metallic asteroids, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 109–126.

    Article  ADS  Google Scholar 

  61. Slyuta, E.N., Shape of small Solar System bodies, Sol. Syst. Res., 2014, vol. 48, no. 3, pp. 217–238.

    Article  ADS  Google Scholar 

  62. Slyuta, E.N. and Voropaev, S.A., Small and planetary bodies of the Solar System: The critical mass for icy bodies, Sol. Syst. Res., 1993, vol. 27, no. 1, pp. 55–64.

    ADS  Google Scholar 

  63. Slyuta, E.N. and Voropaev, S.A., Gravitational deformation in shaping asteroids and small satellites, Icarus, 1997, vol. 129, pp. 401–414.

    Article  ADS  Google Scholar 

  64. Slyuta, E.N. and Voropaev, S.A., Gravitational deformation of small bodies of the solar system: History of the problem and its analytical solution, Sol. Syst. Res., 2015, vol. 49, no. 2, pp. 123–138.

    Article  ADS  Google Scholar 

  65. Slyuta, E.N., Vysochkin, V.V., Ivanov, V.V., Makovchuk, V.Yu., Nazarov, A.I., Pogonin, V.I., Roskina, E.A., Safronov, V.V., and Tatsiy, L.P., METEOR-L device on the lunar orbital vehicle Luna-26: Space dust detector, Sol. Syst. Res., 2021, vol. 55, no. 5, pp. 437–445.

    Article  ADS  Google Scholar 

  66. Soderblom, L.A., Boice, D.C., Britt, D., Brown, R.H., Buratti, B.J., Hicks, J., Hillier, M., Lee, R., Meier, R., Nelson, J., Oberst, T., Owen, A., Rivkin, W., Sandel, A., Stern, N., Thomas, R., and Yelle, V.R., Deep Space 1 MICAS observations of 9969 Braille, Bull. Astron. Soc., 1999, vol. 31, no. 4, p. 1127.

    ADS  Google Scholar 

  67. Tachibana, S., Abe, M., Arakawa, M., Fujimoto, M., Iijima, Y., Ishiguro, M., Kitazato, K., Kobayashi, N., Namiki, N., Okada, T., Okazaki, R., Sawada, H., Sugita, S., Takano, Y., Tanaka, S., Watanabe, S., Yoshikawa, M., Kuninaka, H., The Hayabusa2 Project team, Hayabusa2: Scientific importance of samples returned from C‑type near-Earth asteroid (162173) 1999 JU3, Geochem. J., 2014, vol. 48, no. 6, pp. 571–587.

    Article  ADS  Google Scholar 

  68. Tholen, D.J. and Barucci, M.A., Asteroids taxonomy, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 298–315.

    Google Scholar 

  69. Tholen, D.J., Asteroid taxonomic classifications, in Asteroids II, Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 1139–1150.

    Google Scholar 

  70. Thomas, C.A., Naidu, S.P., Scheirich, P., Moskovitz, N.A., Pravec, P., Chesley, S.R., Rivkin, A.S., Osip, D.J., Lister, T.A., Benner, L.A.M., Brozovic, M., and 38 co-authors, Orbital period change of Dimorphos due to the DART kinetic impact, Nature, 2023. https://doi.org/10.1038/s41586-023-05805-2

  71. Trombka, J.I., Squyres, S.W., Brückner, J., Boynton, W.V., Reedy, R.C., McCoy, T.J., Gorenstein, P., Evans, L.G., Arnold, J.R., Starr, R.D., Nittler, L.R., Murphy, M.E., Mikheeva, I., McNutt, R.L., McClanahan, T.P., McCartney, E., Goldsten, J.O., Gold, R.E., Floyd, S.R., Clark, P.E., Burbine, T.H., Bhangoo, J.S., Bailey, S.H., and Petaev, M., The elemental composition of asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer, Science, 2000, vol. 289, pp. 2101–2105.

    Article  ADS  Google Scholar 

  72. Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, IIIJ.F., Carcich, B., Joseph, J., Chapman, C., Merline, W., Robinson, M., Malin, M., McFadden, L.A., Murchie, S., Hawkins, IIIS.E., Farquhar, R., Izenberg, N., and Cheng, A., NEAR’s flyby of 253 Mathilde: Images of a C asteroid, Science, 1997, vol. 278, pp. 2109–2114.

    Article  ADS  Google Scholar 

  73. Veverka, J., Thomas, P.C., Bell, IIIJ.F., Bell, M., Carcich, B., Clark, B., Harch, A., Joseph, J., Martin, P., Robinson, M., Murchie, S., Izenberg, N., Hawkins, E., Warren, J., Farquhar, R., Cheng, A., Dunham, D., Chapman, C., Merline, W.J., McFadden, L., Wellnitz, D., Malin, M., Owen, W.M., Jr., Miller, J.K., Williams, B.G., and Yeomans, D.K., Imaging of asteroid 433 Eros during NEAR’s flyby reconnaissance, Science, 1999, vol. 285, pp. 562–564.

    Article  ADS  Google Scholar 

  74. Veverka, J., Farquhar, B., Robinson, M., Thomas, P., Murchie, S., Harch, A., Antreasian, P.G., Chesley, S.R., Miller, J.K., Owen, JrW.M., Williams, B.G., Yeomans, D., Dunham, D., Heyler, G., Holdridge, M., Nelson, R.L., Whittenburg, K.E., Ray, J.C., Carcich, B., Cheng, A., Chapmank, C., Bell, IIIJ.F., Bell, M., Bussey, B., Clark, B., Domingue, D., Gaffey, M.J., Hawkins, E., Izenberg, N., Joseph, J., Kirk, R., Lucey, P., Malin, M., McFadden, L., Merlinek, W.J., Peterson, C., Prockter, L., Warren, J., and Wellnitz, D., The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros, Nature, 2001, vol. 413, pp. 390–393.

    Article  ADS  Google Scholar 

  75. Wasserburg, G.J., Sanz, H.G., Bence, A.E., Potassium-feldspar phenocrysts in the surface of Colomera, an iron meteorite, Science, 1968, vol. 161, pp. 684–687.

    Article  ADS  Google Scholar 

  76. Wasson, J.T., the chemical classification of iron meteorites. 1. A study of iron meteorites with low concentrations of gallium and germanium, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 161–175.

    Article  ADS  Google Scholar 

  77. Wasson, J.T., The chemical classification of iron meteorites. 3. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm, Geochim. Cosmochim. Acta, 1969, vol. 55, pp. 859–874.

    Article  ADS  Google Scholar 

  78. Wasson, J.T., The chemical classification of iron meteorites. 4. irons with Ge concentrations greater than 190 ppm and other meteorites associated with group I, Icarus, 1970a, vol. 12, pp. 407–423.

    Article  ADS  Google Scholar 

  79. Wasson, J.T., Ni, Ga, Ge and Ir in the metal of iron meteorites with silicate inclusions, Geochim. Cosmochim. Acta, 1970b, vol. 34, pp. 957–969.

    Article  ADS  Google Scholar 

  80. Wasson, J.T., Meteorites: Classification and properties, in Minerals and Rocks, New York: Springer-Verlag, 1974, vol. 10.

    Google Scholar 

  81. Wasson, J.T. and Kimberlin, J., The chemical classification of iron meteorites. 2. Irons and pallasites with germanium concentrations between 8 and 100 ppm, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 2065–2077.

    Article  ADS  Google Scholar 

  82. Wasson, J.T. and Schaudy, R., The chemical classification of iron meteorites. 5. Groups IIIc and IIId and other irons with germanium concentrations between 1 and 25 ppm, Icarus, 1971, vol. 14, pp. 59–70.

    Article  ADS  Google Scholar 

  83. Watanabe, S., Hirabayashi, M., Hirata, N., Hirata, Na., Noguchi, R., Shimaki, Y., Ikeda, H., Tatsumi, E., Yoshikawa, M., Kikuchi, S., and 78 co-authors, Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top-shaped rubble pile, Science, 2019, vol. 364, pp. 268–272.

    Article  ADS  Google Scholar 

  84. Williams, D.A., Buczkowski, D.L., Mest, S.C., Scully, J.E.C., Platz, T., and Kneissl, T., Introduction: The geologic mapping of Ceres, Icarus, 2018, vol. 316, pp. 1–13.

    Article  ADS  Google Scholar 

  85. Yabuta, H., Cody, G.D., Engrand, C., Kebukawa, Y., De Gregorio, B., Bona, L., Remusat, L., Stroud, R., Quirico, E., Nittler, L., and 120 co-authors, Macromolecular organic matter in samples of the asteroid (162173) Ryugu, Science, 2023, vol. 379, no. 6634. https://doi.org/10.1126/science.abn9057

  86. Yokoyama, T., Nagashima, K., Nakai, I., Young, E.D., Abe, Y., Aleon, J., Alexander, C.M.O’D., Amari, S., Amelin, Y., Bajo, K., and 139 co-authors, Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites, Science, 2023, vol. 379, no. 6634. https://doi.org/10.1126/science.abn7850

  87. Yushkova, O.V., Gavrik, A.L., Marchuk, V.N., Yushkov, V.V., Smirnov, V.M., Laptev, M.A., Chernyshev, B.V., Dutyshev, I.N., Lebedev, V.P., Medvedev, A.V., and Petrukovich, A.A., Bistatic radar detection in the Luna-Resurs mission, Sol. Syst. Res., 2018, vol. 52, no. 4, pp. 287–300.

    Article  ADS  Google Scholar 

  88. Zheng, C., Ping, J., and Wang, M., Hierarchical classification for the topography analysis of asteroid (4179) Toutatis from the Chang’e-2 images, Icarus, 2016, vol. 278, pp. 119–127.

    Article  ADS  Google Scholar 

  89. Zuber, M.T., Smith, D.E., Cheng, A.F., Garvin, J.B., Aharonson, O., Cole, T.D., Dunn, P.J., Guo, Y., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., and Torrence, M.H., The shape of 433 Eros from the NEAR-Shoemaker laser rangefinder, Science, 2000, vol. 289, pp. 2097–2101.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Slyuta.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyuta, E.N., Shakhanov, A.E. & El’nikov, R.V. Study of Small Bodies of the Solar System: Odyssey-Asteroids Project. Sol Syst Res 57, 556–580 (2023). https://doi.org/10.1134/S0038094623060072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623060072

Keywords:

Navigation