Skip to main content
Log in

Temperature and Pressure Sensors of the Meteorological Complex for the Study of the Mars’s Atmosphere

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Temperature and pressure sensors, which are part of the ExoMars-2022 landing platform (LP) meteorological complex, are designed to measure the main parameters of the Martian atmosphere: temperature, pressure, and vertical component of wind speed. Temperature and pressure measurements begin during the descent, after the separation of the lower hemisphere, when the height above the surface will be from 2.1 to 8.5 km, depending on the descent trajectory. Above, before opening the parachute, the vertical profile of the atmosphere can be obtained using the accelerometer block, which is also part of the meteorological complex. After landing, a long-term monitoring of the near-surface layer of the atmosphere is carried out. Measurements are taken at different heights from the surface. Taking into account the measurement of the vertical component of the wind after landing, the local surface-to-atmosphere heat flux is calculated. The measurements make it possible to obtain the dynamics of the interaction between the atmosphere and the surface. In the paper we considered the scientific problems solved by the sensors, briefly described the measurement program and described in detail the sensors and their characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Banfield, D., Rodriguez-Manfredi, J., Russell, C., Rowe, K.M., Leneman, D., Lai, H.R., Cruce, P.R., Means, J.D., Johnson, C.L., Mittelholz, A., Joy, S.P., Chi, P.J., Mikellides, I.G., Carpenter, S., Navarro, S., Sebastian, E., Gomez-Elvira, J., Torres, J., Mora, L., and Peinado, V., Lepinette, A., The TWINS Team, Hurst, K., Lognonné, P., Smrekar, S.E., and Banerdt, W.B., InSight Auxiliary Payload Sensor Suite (APSS), Space Sci. Rev., 2019, vol. 215. https://doi.org/10.1007/s11214-018-0570-x

  2. Chamberlain, T.E., Cole, H.L., Dutton, R.G., Greene, G.C., and Tillman, J.E., Atmospheric measurements on Mars: The Viking meteorology experiment, Bull. Am. Meteorol. Soc., 1976, vol. 57, no. 9, pp. 1094–1104. https://doi.org/10.1175/1520-0477(1976)057<1094:AMOMTV>2.0.CO;2

    Article  ADS  Google Scholar 

  3. Dadayan, Yu.A., Metodicheskoe posobie k vypolneniyu kursovogo proekta “Datchik davleniya” (Methodical manual for the implementation of the course project “Pressure Sensor”), Moscow: Ross. Gos. Univ. Nefti i Gaza im. I.M. Gubkina, 2008, pp. 1–29.

  4. Davy, R., Davis, J.A., Taylor, P.A., Lange, C.F., Weng, W., Whiteway, J., and Gunnlaugson, H.P., Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 2010, vol. 115, no. 3, p. E00E13. https://doi.org/10.1029/2009JE003444

    Article  ADS  Google Scholar 

  5. Ellehoj, M.D., Gunnlaugsson, H.P., Taylor, P.A., Kahanpää, H., Bean, K.M., Cantor, B.A., Gheynani, B.T., Drube, L., Fisher, D., Harri, A.-M., Holstein-Rathlou, C., Lemmon, M.T., Madsen, M.B., Malin, M.C., Polkko, J., Smith, P.H., Tamppari, L.K., Weng, W., and Whiteway, J., Convective vortices and dust devils at the Phoenix Mars mission landing site, JGR: Planets, 2010, vol. 115, no. 4, p. E00E16. https://doi.org/10.1029/2009JE003413

    Article  Google Scholar 

  6. Gómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gomez, F., Haberle, R., Hamilton, V., Harri, A., Kahanpää, H., Kemppinen, O., Lepinette, A., Javier Martín Soler, Martín-Torres, J., Martínez-Frías, J., Mischna, M., Mora, L., Navarro, S., Newman, C., Pablo, M., Peinado, V., Polkko, J., Rafkin, S., Ramos, M., Renno, N., Richardson, M., Rodriguez-Manfred, J., Romeral Planelló Julio, J., Sebastián, E., Torre Juárez, M., Torres, J., Urqui, R., Vasavada, A., Verdasca, J., and Zorzano, M., Curiosity’s rover environmental monitoring station: Overview of the first 100 sols, JGR: Planets, 2014, vol. 119, no. 7, pp. 1680–1688. https://doi.org/10.1002/2013JE004576

    Article  ADS  Google Scholar 

  7. Haberle, R.M., Gómez-Elvira, J., de la Torre Juárez, M., Harri, A.-M., Hollingsworth, J.L., Kahanpää, H., Kahre, M.A., Lemmon, M., Martín-Torres, F.J., Mischna, M., Moores, J.E., Newman, C., Rafkin, S., Renno, N., Richardson, M.I., Rodríguez-Manfredi, J.A., Vasavada, A.R., Zorzano-Mier, M.-P., and REMS/MSL Science Teams, Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, JGR: Planets, 2014, vol. 119, no. 3, pp. 440–453. https://doi.org/10.1002/2013JE004488

  8. Haberle, R.M., Catling, D.C., Carr, M.H., and Zahnle, K.J., The Atmosphere and Climate of Mars, Cambridge: Cambridge Univ. Press, 2017, pp. 497–525. https://doi.org/10.1017/9781139060172

    Book  Google Scholar 

  9. Harri, A.-M., Genzer, M., Kemppinen, O., Kahanpää, H., Gomez-Elvira, J., Rodriguez-Manfredi, J.A., Haberle, R., Polkko, J., Schmidt, W., Savijärvi, H., Kauhanen, J., Atlaskin, E., Richardson, M., Siili, T., Paton, M., de la Torre Juarez, M., Newman, C., Rafkin, S., Lemmon, M.T., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Zorzano, M.-P., Peinado, V., Urqui, R., Lapinette, A., Scodary, A., Mäkinen, T., Vazquez, L., Rennó, N., and the REMS/MSL Science Team, Pressure observations by the Curiosity rover: Initial results, JGR: Planets, 2014, vol. 119, no. 1, pp. 82–92. https://doi.org/10.1002/2013JE004423

    Article  ADS  Google Scholar 

  10. Harri, A.-M., Pichkadze, K., Zeleny, L., Vazquez, L., Schmidt, W., Alexashkin, S., Korablev, O., Guerrero, H., Heilimo, J., Uspensky, M., Finchenko, V., Linkin, V., Arruego, I., Genzer, M., Lipatov, A., Polkko, J., Paton, M., Savijarvi, H., Haukka, H., Siili, T., Khovanskov, V., Ostesko, B., Poroshin, A., Michelena-Diaz, M., Siikonen, T., Palin, M., Vorontsov, V., Polyakov, A., Valero, F., Kemppinen, O., Leinonen, J., and Romero, P., The MetNet vehicle: A lander to deploy environmental stations for local and global investigations of Mars, Geosci. Instrum. Methods Data Syst. Discuss., 2017, vol. 6, no. 1, pp. 103–124. https://doi.org/10.5194/gi-2016-19

    Article  ADS  Google Scholar 

  11. Kremnev, R.S., Linkin, V.M., Lipatov, A.N., Pichkadze, K.M., Shurupov, A.A., Terterashvili, A.V., Bakitko, R.V., Blamont, J.E., Malique, C., Ragent, B., Preston, R.A., Elson, L.S., and Crisp, D., VEGA balloon system and instrumentation, Science, 1986, vol. 231, no. 4744, pp. 1408–1411. https://doi.org/10.1126/science.231.4744.1408

    Article  ADS  Google Scholar 

  12. Lantratov, K., Automatic interplanetary station Mars-8, Novosti Kosmonavtiki, 1996, vol. 6, nos. 22–23, pp. 137–138.

    Google Scholar 

  13. Linkin, V.M., Kerzhanovich, V.V., Lipatov, A.N., Shurupov, A.A., Seiff, A., Ragent, B., Young, R., Ingersoll, A., Crisp, D., Elson, E., Preston, R., and Blamont, J., Thermal structure of Venus atmosphere in the middle cloud layer, Science, 1986, vol. 231, no. 4744, pp. 1420–1422. https://doi.org/10.1126/science.231.4744.1420

    Article  ADS  Google Scholar 

  14. Martinez, G.M., Newman, C.N., De Vicente-Retortillo, A., Fischer, E., Renno, N.O., Richardson, M.I., Fairén, A.G., Genzer, M., Guzewich S.D., Haberle, R.M., Harri, A.-M., Kemppinen, O., Lemmon, M.T., Smith M.D., de la Torre-Juárez, M., and Vasavada, A.R., The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to Curiosity, Space Sci. Rev., 2017, vol. 212, nos. 1–2, pp. 295–338. https://doi.org/10.1007/s11214-017-0360-x

    Article  ADS  Google Scholar 

  15. Moroz, V.I., Izakov, M.N., and Linkin, V.M., Engineering model of the atmosphere of Mars: (Option MA-87), Preprint of the Space Research Institute, Moscow, 1988, no. 1449.

  16. Murphy, J.R. and Nelli, S., Pathfinder convective vortices: Frequency of occurrence, Geophys. Res. Lett., 2002, vol. 29, no. 23, pp. 18-1–18-4. https://doi.org/10.1029/2002GL015214

  17. Read, P. and Lewis, S., The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet, Berlin: Springer, 2004. https://doi.org/10.5860/choice.42-0920

    Book  Google Scholar 

  18. Schofield, J.T., Barnes, J.R., Crisp, D., Haberle, R., Larsen, S., Magalhaes, J.A., Murphy, J., Seiff, A., and Wilson, G., The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science, 1997, vol. 278, no. 5344, pp. 1752–1758. https://doi.org/10.1126/science.278.5344.1752

    Article  ADS  Google Scholar 

  19. Sutton, J., Leovy, C., and Tillman, J., Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites, J. Atmos. Sci., 1978, vol. 35, pp. 2346–2355. https://doi.org/10.1175/1520-0469(1978)035<2346:DVOTMS>

  20. Taylor, P., Catling, D., Daly, M., Dickinson, C., Gunnlaugsson, H.P., Harri Ari-Matti, and Lange, C., Temperature, pressure, and wind instrumentation in the Phoenix meteorological package, J. Geophys. Res., 2008, vol. 113, p. E00A10. https://doi.org/10.1029/2007JE003015

    Article  Google Scholar 

  21. Tillman, J.E., Henry, R.M., and Hess, S.L., Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm, J. Geophys. Res., 1979, vol. 84, pp. 2947–2955. https://doi.org/10.1029/JB084iB06p02947

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lipatov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatov, A.N., Ekonomov, A.P., Makarov, V.S. et al. Temperature and Pressure Sensors of the Meteorological Complex for the Study of the Mars’s Atmosphere. Sol Syst Res 57, 336–348 (2023). https://doi.org/10.1134/S003809462304007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462304007X

Keywords:

Navigation