Skip to main content
Log in

Searching for Life on Venus: History of the Problem and Basic Concepts

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Venus has always been one of the priorities of the space research program in Russia. The history of successful investigations of Venus in the Soviet Union is primarily associated with delivering a whole series of spacecraft to it and implementing the first ever landing on its surface. In the last few years, the study of Venus in astrobiological direction has been rapidly developing. To date, a fairly large number of theoretical papers have been published, the main purpose of which is to estimate the possibility of the existence of living organisms on Venus. The most likely ecosystem, in which Earth-type organisms could develop, is considered to be a dense cloud layer of Venus. It is supposed that, in this layer, hypothetical microbial communities could exist in aerosols being a concentrated aqueous solution of sulfuric acid. Microorganisms in such a specific air habitat are to be exposed to several extreme factors at once, the main among which are very low values of pH and water activity. The principal strategies for survival under these conditions should be the availability of effective biochemical mechanisms of resistance to the impact of adverse environmental factors and the use of all possible ways of extracting energy in such an ecosystem to maintain the biomass of organisms at a level for stable reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Mone, A.I., Deguillaume, L., Delort, A.-M., and Debroas, D., Active microorganisms thrive among extremely diverse communities in cloud water, PLoS One, 2017, vol. 12, no. 8, p. e0182869. https://doi.org/10.1371/journal.pone.0182869

    Article  Google Scholar 

  2. Anan’eva, V.I., Tavrov, A.V., Petrova, E.V., and Korablev, O.I., Habitable zones. From the Solar System to exoplanets, Zemlya i Vselennaya, 2020, no. 3, pp. 37–45. https://doi.org/10.7868/S0044394820030044

  3. Andreichikov, B.M., Akhmetshin, I.K., Korchuganov, B.N., Mukhin, L.M., Ogorodnikov, B.I., Petryanov, I.V., and Skitovich, V.I., Chemical composition and structure of Venus clouds from results of X-ray radiometric experiments made with the Vega 1 and Vega 2 automatic interplanetary stations, Kosm. Issled., 1987, vol. 25, p. 15.

    Google Scholar 

  4. Arrhenius, S., The Destinies of Stars, New York: The Knickerbocker Press, 1918.

    Google Scholar 

  5. Bains, W., Petkowski, J.J., Sousa-Silva, C., and Seager, S., New environmental model for thermodynamic ecology of biological phosphine production, Sci. Total. Environ., 2019, vol. 658, pp. 521–536. https://doi.org/10.1016/j.scitotenv.2018.12.086

    Article  ADS  Google Scholar 

  6. Bains, W., Petkowski, J.J., Zhan, Z., and Seager, S., Evaluating alternatives to water as solvents for life: the example of sulfuric acid, Life, 2021, vol. 11, p. 400. https://doi.org/10.3390/life11050400

    Article  ADS  Google Scholar 

  7. Barker, E.S., Detection of SO2 in the UV spectrum of Venus, Geophys. Res. Lett., 1979, vol. 6, pp. 117–120.

    Article  ADS  Google Scholar 

  8. Bertaux, J.-L., Widemann, T., Hauchecorne, A., Moroz, V.I., and Ekonomov, A.P., Vega 1 and Vega 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2 aerosols, cloud structure), J. Geophys. Res.: Planets, 1996, vol. 101, pp. 12709–12745.

    Article  ADS  Google Scholar 

  9. Clarke, A., Morris, G.J., Fonseca, F., Murray, B.J., Acton, E., and Price, H.C., A low temperature limit for life on Earth, PloS One, 2013, vol. 8, no. 6, p. e66207. https://doi.org/10.1371/journal.pone.0066207

    Article  ADS  Google Scholar 

  10. Cockell, C.S., Life on Venus, Planet. Space Sci., 1999, vol. 47, pp. 1487–1501.

    Article  ADS  Google Scholar 

  11. Cockell, C.S., Bush, T., Bryce, C.S., Direito, S., Fox-Powell, M., Harrison, P., Lammer, H., Landenmark, H., Martin-Torres, J., Nicholson, N., Noack, L., O’Malley-James, J., Payler, S.J., Rushby, A., Samuels, T., Schwendner, P., Wadsworth, J., and Zorzano, M.P., Habitability: A review, Astrobiology, 2016, vol. 16, pp. 89–117.

    Article  ADS  Google Scholar 

  12. Cockell, C.S., Higgins, P.M., and Johnstone, A.A., Biologically available chemical energy in the temperate but uninhabitable Venusian cloud layer: What do we want to know?, Astrobiology, 2021, vol. 21, no. 10. https://doi.org/10.1089/ast.2020.2280

  13. Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M., Mailhot, G., Laj, P., and Deguillaume, L., A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes, Atmos. Res., 2010, vol. 98, pp. 249–260.

    Article  Google Scholar 

  14. Delort, A.-M., Vaïtilingom, M., Joly, M., Amato, P., Wirgot, N., Lallement, A., Sancelme, M., and Deguillaume, L., Clouds: A transient and stressing habitat for microorganisms, in Microbial Ecology of Extreme Environments, Chénard, C. and Lauro, F.M., Eds., Cham: Springer, 2017, pp. 215–245.

    Google Scholar 

  15. Donahue, T.M. and Hodges, R.R., Past and present water budget of Venus, J. Geophys. Res., 1992, vol. 97, pp. 6083–6091.

    Article  ADS  Google Scholar 

  16. Greaves, J.S., Richards, A.M.S., Bains, W., Rimmer, P.B., Sagawa, H., Clements, D.L., Seager, S., Petkowski, J.J., Sousa-Silva, C., Sukrit Ranjan, S., Drabek-Maunder, E., Fraser, H.J., Cartwright, A., Mueller-Wodarg, I., Zhan, Z., Friberg, P., Coulson, I., Lee, E., and Hoge, J., Phosphine gas in the cloud decks of Venus, Nat. Astron., 2020, vol. 5, no. 7, pp. 655–664. https://doi.org/10.1038/s41550-020-1174-4

    Article  ADS  Google Scholar 

  17. Gottesman, S., Trouble is coming: Signaling pathways that regulate general stress responses in bacteria, J. Biol. Chem., 2019, vol. 294, no. 31, pp. 11685–11700. https://doi.org/10.1074/jbc.REV119.005593

    Article  Google Scholar 

  18. Grinspoon, D.H., Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet, Boston, MA: Addison Wesley, 1997.

    Google Scholar 

  19. Grinspoon, D.H. and Bullock M.A., Astrobiology and Venus exploration, in Exploring Venus as a Terrestrial Planet, Esposito, L.W., Stofan, E.R., and Cravens, T.E., Eds., New York: John Wiley & Sons, 2007, vol. 176, pp. 191–206.

    Google Scholar 

  20. Hallsworth, J.E., Koop, T., Dallas, T.D., Zorzano, M.-P., Burkhardt, J., Golyshina, O.V., Martin-Torres, J., Dymond, M.K., Ball, P., and McKay, C.P., Water activity in Venus’s uninhabitable clouds and other planetary atmospheres, Nat. Astron., 2021, vol. 5, pp. 665–675. https://doi.org/10.1038/s41550-021-01391-3

    Article  ADS  Google Scholar 

  21. Izenberg, N.R., Gentry, D.M., Smith, D.J., Gilmore, M.S., Grinspoon, D.H., Bullock, M.A., Boston, P.J., and Slowik, G.P., The Venus life equation, Astrobiology, 2021, vol. 21, no. 10. https://doi.org/10.1089/ast.2020.2326

  22. Kelly, D.P. and Wood, A.P., Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov., Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 511–516.

    Article  Google Scholar 

  23. Kotsyurbenko, O.R., Is there life… on Venera?, Zemlya i Vselennaya, 2021, vol. 3, pp. 6–20. https://doi.org/10.7868/S0044394821030014

    Article  Google Scholar 

  24. Kotsyurbenko, O.R., Glagolev, M.V., Sabrekov, A.F., and Terentieva, I.E., Systems approach to the study of microbial methanogenesis in West-Siberian wetlands, Environ. Dyn. Glob. Clim. Change, 2020, vol. 11, no. 1, pp. 54–68.

    Google Scholar 

  25. Kotsyurbenko, O.R., Cordova, J.A., Jr., Belov, A.A., Cheptsov, V.S., Khrunyk, J., Kölbl, D., Kryuchkova, M.O., Milojevic, T., Mogul, R., Sasaki, S., Slowik, G.P., Snytnikov, V., and Vorobyova, E.A., Exobiology of Venus clouds: New insights into habitability through terrestrial models and methods of detection, Astrobiology, 2021, vol. 21, no. 10, pp. 1186–1205. https://doi.org/10.1089/ast.2020.2296

    Article  ADS  Google Scholar 

  26. Krasnopolsky, V.A., Chemical composition of Venus atmosphere and clouds: Some unsolved problems, Planet. Space Sci., 2006, vol. 54, pp. 1352–1359.

    Article  ADS  Google Scholar 

  27. Ksanfomality, L.V., Selivanov, A.S., and Gektin, Yu.M., Signs of hypothetical flora and fauna of the planet Venus: Returning to archive of the old TV-experiments, Int. J. Opt. Photonic Eng, 2018, vol. 3, p. 007.

  28. Ksanfomality, L.V., Zelenyi, L.M., Parmon, V.N., and Snytnikov, V.N., Hypothetical signs of life on Venus: Revising results of 1975–1982 TV experiments, Phys.-Usp., 2019, vol. 62, pp. 378–404. https://doi.org/10.3367/UFNe.2018.12.038507

    Article  ADS  Google Scholar 

  29. Limaye, S.S., Mogul, R., Smith, D.J., Ansari, A.H., Slowik, G.P., and Vaishampayan, P., Venus’ spectral signatures and the potential for life in the clouds, Astrobiology, 2018, vol. 18, pp. 1181–1198.

    Article  ADS  Google Scholar 

  30. Limaye, S.S., Mogul, R., Baines, K.H., Bullock, M.A., Cockell, C., Cutts, J.A., Gentry, D.M., Grinspoon, D.H., Head, J.W., Jessup, K.-L., Kompanichenko, V., Lee, Y.J., Mathies, R., Milojevic, T., Pertzborn, R.A., Rothschild, L., Sasaki, S., Schulze-Makuch, D., Smith, D.J., and Way, M.J., Venus, an astrobiology target, Astrobiology, 2021, vol. 21, no. 10, pp. 1163–1185. https://doi.org/10.1089/ast.2020.2268

    Article  ADS  Google Scholar 

  31. Marov, M.Ya., Vladimir Ivanovich Vernadsky: Studies of the biosphere and astrobiology, Noosfera, 2013, no. 3, pp. 111–131.

  32. Milojevic, T., Treiman, A.H., and Limaye, S.S., Phosphorus in the clouds of Venus: Potential for bioavailability, Astrobiology, 2021, vol. 21, no. 10. https://doi.org/10.1089/ast.2020.2267

  33. Mogul, R., Limaye, S.S., Lee, Y.J., and Pasillas, M., Potential for phototrophy in Venus’ clouds, Astrobiology, 2021a, vol. 21, no. 10, pp. 1237–1249. https://doi.org/10.1089/ast.2021.0032

    Article  ADS  Google Scholar 

  34. Mogul, R., Limaye, S.S., Way, M.J., and Cordova, J.A., Venus’ mass spectra show signs of disequilibria in the middle clouds, Geophys. Res. Lett., 2021b, vol. 48, no. 7, p. e2020GL091327. https://doi.org/10.1029/2020GL091327

  35. Morowitz, H. and Sagan, C., Life in the clouds of Venus?, Nature, 1967, vol. 215, no. 5107, pp. 1259–1260. https://doi.org/10.1038/2151259a0

    Article  ADS  Google Scholar 

  36. Mukhin, L.M., Gel’man, B.G., Lamonov, N.I., Mel’nikov, V.V., Nenarokov, D.F., Okhotnikov, B.P., Rotin, V.A., and Khokhlov, V.N., Gas chromatographic analysis of the chemical composition of the atmosphere of Venus on the Venera 13 and Venera 14 landers, Kosm. Issled., 1983, vol. 21, pp. 225–230.

    ADS  Google Scholar 

  37. Nimmo, F. and Pappalardo, R.T., Ocean worlds in the outer Solar System, J. Geophys. Res.: Planets, 2016, vol. 121, pp. 1378–1399. https://doi.org/10.1002/2016JE005081

    Article  ADS  Google Scholar 

  38. Noack, L., Honing, D., Rivoldini, A., Heistracher, C., Zimov, N., Journaux, B., Lammer, H., Van Hoolst, T., and Bredehoft, J.H., Water-rich planets: How habitable is a water layer deeper than on Earth?, Icarus, 2016, vol. 277, pp. 215–236. https://doi.org/10.1016/j.icarus.2016.05.009

    Article  ADS  Google Scholar 

  39. Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H., Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans, J. Bacteriol., 2002, vol. 184, pp. 2081–2087.

    Article  Google Scholar 

  40. Oyama, V.I., Carle, G.C., Woeller, F., Pollack, J.B., Reynolds, R.T., and Craig, R.A., Pioneer Venus gas chromatography of the lower atmosphere of Venus, J. Geophys. Res.: Space Phys., 1980, vol. 85, pp. 7891–7902.

    Article  ADS  Google Scholar 

  41. Pérez-Hoyos, S., Sánchez-Lavega, A., García-Muñoz, A., Irwin, P.G.J., Peralta, J., Holsclaw, G., McClintock, W.M., and Sanz-Requena, J.F., Venus upper clouds and the UV absorber from MESSENGER/MASCS observations, J. Geophys. Res.: Planets, 2018, vol. 123, no. 1, pp. 145–162. https://doi.org/10.1002/2017JE005406

    Article  ADS  Google Scholar 

  42. Plumb, J.J., Haddad, C.M., Gibson, J.A.E., and Franzmann, P.D., Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 1418–1423. https://doi.org/10.1099/ijs.0.64846-0

    Article  Google Scholar 

  43. Porshnev, N.V., Mukhin, L.M., Gel’man, B.E., Nenarokov, D.F., Rotin, V.A., D’yachkov, A.V., and Bondarev, V.B., Gas chromatographic analysis of products of thermal reactions of Venus cloud layer aerosol on Vega 1 and Vega 2 stations, Kosm. Issled., 1987, vol. 25, pp. 715–720.

    ADS  Google Scholar 

  44. Proctor, R.A., Other Worlds than Ours: The Plurality of Worlds Studied under the Light of Recent Scientific Researches, New York: J.A. Hill and Co, 1870.

    Google Scholar 

  45. Schulze-Makuch, D., Grinspoon, D.H., Abbas, O., Irwin, L.N., and Bullock, M.A., A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere, Astrobiology, 2004, vol. 4, pp. 11–18.

    Article  ADS  Google Scholar 

  46. Seager, S., Petkowski, J.J., Gao, P., Bains, W., Bryan, N.C., Ranjan, S., and Greaves, J., The Venusian lower atmosphere haze as a depot for desiccated microbial life: A proposed life cycle for persistence of the Venusian aerial biosphere, Astrobiology, 2021, vol. 21, no. 2, p. 2244. https://doi.org/10.1089/ast.2020.2244

    Article  Google Scholar 

  47. Segerer, A.H., Neuner, A., Kristjansson, J.K., and Stetter, K.O., Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacterial, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 559–564.

    Article  Google Scholar 

  48. Segerer, A.H., Trincone, A., Gahrtz, M., and Stetter, K.O., Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales, Int. J. Syst. Bacteriol., 1991, vol. 41, pp. 495–501.

    Article  Google Scholar 

  49. Shematovich, V.I., Ocean worlds in the outer regions of the Solar System (review), Sol. Syst. Res., 2018, vol. 52, no. 5, pp. 371–381. https://doi.org/10.1134/S0038094618050076

    Article  ADS  Google Scholar 

  50. Skladnev, D.A., Karlov, S.P., Khrunyk, Y.Y., and Kotsyurbenko, O.R., Water-sulfuric acid foam as a possible habitat for hypothetical microbial community in the cloud layer of Venus, MDPI Life, 2021, vol. 11, vol. 1034. https://doi.org/10.3390/life11101034

    Book  Google Scholar 

  51. Snytnikov, V.N., Chemical base of hypothetical life on Venus, Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop, Space Research Institute, Moscow, Russia, October 2–5, 2019. http://venera-d.cosmos.ru/uploads/media/7.

  52. Surkov, Y.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., and Atrashkevich, V.V., Aerosols in the clouds on Venus: Preliminary Venera 14 data, Sov. Astron. Lett., 1982, vol. 8, pp. 377–379.

    ADS  Google Scholar 

  53. Tikhov G.A. Astrobotanika (Astrobotanics), Alma-Ata: Akad. Nauk Kaz. SSR, 1949.

    Google Scholar 

  54. Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., and Delort, A.-N., Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 559–564.

    Article  ADS  Google Scholar 

  55. Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., and Holmes, D.S., Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications, BMC Genomics, 2008, vol. 9, p. 597. https://doi.org/10.1186/1471-2164-9-597

    Article  Google Scholar 

  56. Vinogradov, A.P., Surkov, U.A., and Florensky, C.P., The chemical composition of the Venus atmosphere based on the data of the interplanetary station Venera 4, J. Atmos. Sci., 1968, vol. 25, pp. 535–536.

    Article  ADS  Google Scholar 

  57. Yoshida, N., Nakasato, M., Ohmura, N., Ando, A., Saiki, H., Ishii, M., and Igarashi, Y., Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+, Curr. Microbiol., 2006, vol. 53, pp. 406–411.

    Article  Google Scholar 

  58. Zasova, L.V., Krasnopolsky, V.A., and Moroz, V.I., Vertical distribution of SO2 in upper cloud layer of Venus and origin of UV absorption, Adv. Space Res., 1981, vol. 1, pp. 13–16.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Kotsyurbenko.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsyurbenko, O.R. Searching for Life on Venus: History of the Problem and Basic Concepts. Sol Syst Res 57, 221–235 (2023). https://doi.org/10.1134/S003809462303005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462303005X

Keywords:

Navigation