Skip to main content
Log in

Study the Non-Linear Stability of Non-Collinear Libration Point in the Restricted Three-Body Configuration When the Shapes of the Primaries are Taken as Heterogeneous and Finite-Straight Segment

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The main focus of the present research work is to analyze the non-linear stability of the triangular equilibrium points \({{\mathcal{L}}_{4}}\) and \({{\mathcal{L}}_{5}}\) in the restricted three-body problem (R3BP). The condition of stability has been found out under the influence of the heterogeneous primary and a radiating finite-straight segment secondary and also under the effect by Coriolis as well as Centrifugal forces. This piece of research has been done by doing the normalization of the Hamiltonian in order to attained the Birkhoff’s normal form of the Hamiltonian, since normal forms of Hamiltonian are important to study the non-linear stability of equilibrium points. The conditions of KAM Theorem have been examined in the presence of resonance cases \(\omega _{1}^{'} = 2\omega _{2}^{'}\) and \(\omega _{1}^{'} = 3\omega _{2}^{'}\) and found that these conditions have been failed for three values of mass ratios \({{\mu }_{1}},\) \({{\mu }_{2}}\) and \({{\mu }_{3}}.\) Except these three values, \({{\mathcal{L}}_{4}}\) and \({{\mathcal{L}}_{5}}\) are stable in non-linear sense within the range of linear stability \(0 < \mu < {{\mu }_{c}},\) where \({{\mu }_{c}}\) is the critical value of mass parameter \(\mu .\) Consequently, in the presence of above mentioned purturbations the triangular equilibrium points are unstable for these three values of mass ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Abouelmagd, E.I., The effect of photo-gravitational force and oblateness in the perturbed restricted three-body problem, Astrophys. Space Sci., 2013, vol. 346, pp. 51–69.

    Article  ADS  MATH  Google Scholar 

  2. Abouelmagd, E.I. and Ansari, A.A., The motion properties of the infinitesimal body in the framework of bi-circular Sun-perturbed Earth–Moon system, New Astron., 2019, vol. 73, p. 101282.

    Article  Google Scholar 

  3. Ansari, A.A., The circular restricted four-body problem with triaxial primaries and variable infinitesimal mass, Appl. Appl. Math.: Int. J., 2018, vol. 13, pp. 818–838.

    MathSciNet  MATH  Google Scholar 

  4. Ansari, A.A., Kind of Robe’s restricted problem with heterogeneous irregular primary of N-layers when outer most layer has viscous fluid, New Astron., 2021a, vol. 83, p. 101496.

    Article  Google Scholar 

  5. Ansari, A.A., Heterogeneous primary in the restricted three-body problem with modified Newtonian potential of secondary body, Bulg. Astron. J., 2021b, vol. 35, p. 76.

    Google Scholar 

  6. Ansari, A.A. and Alam, M., Dynamics in the circular restricted three body problem with perturbations, Int. J. Adv. Astron., 2017, vol. 5, pp. 19–25.

    Article  Google Scholar 

  7. Ansari, A.A., Meena, K.R., and Shalini, K., Generalized CR3B problem with heterogeneous primary and secondary as finite straight segment, Appl. Appl. Math.: Int. J. (AAM), 2021, vol. 16, no. 2, p. 19.

    MathSciNet  MATH  Google Scholar 

  8. Arnold, V.I., On the stability of positions of equilibrium of a Hamiltonian system of ordinary differential equations in the general case, Sov. Math. Dokl., 1961, vol. 2, p. 247.

    Google Scholar 

  9. Arribas, M. and Elipe, A., Non-integrability of the motion of a particle around a massive straight segment, Phys. Lett. A, 2001, vol. 281, nos. 2–3, pp. 142–148.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bhatnagar, K.B. and Chawla, J.M., The effects of oblateness of the bigger primary on collinear libration points in the R3BP, Celestial Mech. Dyn. Astron., 1977, vol. 16, pp. 129–136.

    Article  ADS  MATH  Google Scholar 

  11. Bhatnagar, K.B. and Hallan, P.P., Effect of perturbations in Coriolis and centrifugal forces on the stability of libration points in the restricted problem, Celestial Mech. Dyn. Astron., 1978, vol. 18, pp. 105–112.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bhatnagar, K.B. and Hallan, P.P., The effect of perturbation in Coriollis and centrifugal forces on the nonlinear stability of equilibrium points in the restricted problem of three bodies, Celestial Mech., 1983, vol. 30, p. 97.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bouaziz, F. and Ansari, A.A., Perturbed Hill’s problem with variable mass, Astron. Nachr., 2021, vol. 342, pp. 666–674. https://doi.org/10.1002/asna.202113870

    Article  ADS  Google Scholar 

  14. Chandra, N. and Kumar, R., Effect of oblateness on the non-linear stability of the triangular liberation points of the restricted three-body problem in the presence of resonances, Astrophys. Space Sci., 2004, vol. 291, pp. 1–19.

    Article  ADS  Google Scholar 

  15. Deprit, A. and Deprit-Bartholome, A., Stability of the triangular Lagrangian points, Astron. Astrophys., 1967, vol. 72, pp. 173–179.

    MATH  Google Scholar 

  16. Douskos, C.N. and Markellos, V.V., Out-of-plane equilibrium points in the restricted three-body problem with oblateness, Astron. Astrophys., 2006, vol. 446, pp. 357–360.

    Article  ADS  Google Scholar 

  17. Hallan, P.P. and Mangang, K.B., Effect of perturbations in Coriolis and centrifugal forces on the nonlinear stability of equilibrium point in Robe’s restricted circular three-body problem, Adv. Astron., 2008, vol. 2008, p. 425412.

    Article  ADS  Google Scholar 

  18. Ishwar, B., Non-linear stability in the generalized restricted three-body problem, Celestial Mech. Dyn. Astron., 1996, vol. 65, pp. 253–289.

    ADS  MathSciNet  MATH  Google Scholar 

  19. Ishwar, B. and Sharma, J.P., Non-linear stability in photo-gravitational nonplaner R3BP with oblate smaller primary, Astrophys. Space Sci., 2012, vol. 337, pp. 563–571.

    Article  ADS  MATH  Google Scholar 

  20. Jain, R. and Sinha, D., Stability and regions of motion in the restricted three-body problem when both the primaries are finite straight segments, Astrophys. Space Sci., 2014a, vol. 351, pp. 87–100.

    Article  ADS  Google Scholar 

  21. Jain, R. and Sinha, D., Non-linear stability of L 4 in the restricted problem when the primaries are finite-straight segment under resonances, Astrophys. Space Sci., 2014b, vol. 353, pp. 73–88.

    Article  ADS  Google Scholar 

  22. Jain, S., Hallan, P.P., and Bhatnagar, K.B., Nonlinear stability of L 4 in the restricted three-body when the primaries are triaxial rigid bodies, Indian J. Pure Appl. Math., 2001, vol. 32, pp. 413–445.

    MathSciNet  MATH  Google Scholar 

  23. Kushvah, B.S., Linear stability of equilibrium points in the generalized photo-gravitational Chermnykh’s problem, Astrophys. Space Sci., 2008, vol. 318, pp. 41–50.

    Article  ADS  MATH  Google Scholar 

  24. Kushvah, B.S., Sharma, J.P., and Ishwar, B., Non-linear stability in the generalized photogravitational restricted three-body problem with Poynting–Robertson drag, Astrophys. Space Sci., 2007, vol. 312, pp. 279–293.

    Article  ADS  MATH  Google Scholar 

  25. Markeev, A.P., Tochki libratsii v nebesnoy mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1978.

  26. Poynting, J.H., Radiation in the solar system: Its effect on temperature and its pressure on small bodies, Proc. R. Soc. London Ser. I, 1903, vol. 72, pp. 265–266.

  27. Prasad, S.N., Shalini, K., and Ansari, A.A., The dynamical study of variable mass test particle in nonlinear sense of restricted 3-body problem with heterogeneous primaries, Appl. Appl. Math.: Int. J. (AAM), 2021, vol. 16, no. 2, p. 28.

    MathSciNet  MATH  Google Scholar 

  28. Riaguas, A., Elipe, A., and Moratalla, T.L., Non-linear stability of the equilibria in the gravity field of a finite straight segment, Celestial Mech. Dyn. Astron., 2001, vol. 81, pp. 235–248.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sahdev, S.K. and Ansari, A.A., Generalized Robe’s problem having oblate heterogeneous primary containing viscous fluid inside the outer most layer and radiating spherical secondary with modified Newtonian potential, Sci. Int. Lahore, 2021, vol. 33, pp. 147–151.

    Google Scholar 

  30. Shalini, K., Ansari, A.A., and Ahmad, F., Existence and stability of L 4 of the R3BP when the smaller primary is a heterogeneous triaxial rigid body with N layers, J. Appl. Environ. Biol. Sci., 2016, vol. 6, pp. 249–257.

    Google Scholar 

  31. Sharma, R.K. and SubbaRao, P.V., Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids, Celestial Mech., 1975, vol. 12, pp. 189–201.

    Article  ADS  Google Scholar 

  32. Simmons, J.F.L., McDonald, A.J.C., and Brown, J.C., The restricted 3-body problem with radiation pressure, Celestial Mech., 1985, vol. 35, pp. 145–187.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Singh, B., Shalini, K., Prasad, S.N., and Ansari, A.A., Study the effect of modified Newtonian force on the restricted 3-body configuration in non-linear sense, Appl. Appl. Math.: Int. J. (AAM), 2022, vol. 17, no. 2, p. 10.

    MathSciNet  MATH  Google Scholar 

  34. Singh, J., Effect of perturbations on the non-linear stability of triangular points in the restricted three-body problem with variable mass, Astrophys. Space Sci., 2009, vol. 321, pp. 127–135.

    Article  ADS  MATH  Google Scholar 

  35. Singh, J., Non-linear stability in the restricted three-body problem with oblate variable mass, Astrophys. Space Sci., 2011, vol. 333, pp. 61–68.

    Article  ADS  MATH  Google Scholar 

  36. Singh, J. and Ishwar, B., Effect of perturbations on the stability of triangular points in the restricted problem of three bodies with variable mass, Celestial Mech., 1985, vol. 35, pp. 201–207.

    Article  ADS  MATH  Google Scholar 

  37. Subba Rao, P.V. and Sharma, R.K., Effect of oblateness on the non-linear stability of L 4 in the restricted three-body problem, Celestial Mech. Dyn. Astron., 1996, vol. 65, pp. 291–312.

    ADS  MATH  Google Scholar 

  38. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, London: Cambridge Univ. Press, 1965.

    Google Scholar 

  39. Zhang, M.J., Zhao, C.Y., and Xiong, Y.Q., On the triangular libration points in photo-gravitational restricted three-body problem with variable mass, Astrophys. Space Sci., 2012, vol. 337, pp. 107–113.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhawna Singh, Kumari Shalini, Sada Nand Prasad or Abdullah A. Ansari.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

Appendix A

$$\begin{gathered} {{\tau }_{0}} = \frac{1}{{96}}\left( {12{{\gamma }^{2}} + 36{{\gamma }^{2}}{{J}_{1}} + 156{{J}_{1}} - 108{{J}_{2}}} \right. \\ \left. { + \,\,12{{\gamma }^{2}}S - 16\gamma S + 52S + 132} \right), \\ \end{gathered} $$
$${{\tau }_{1}} = - \frac{1}{{12\sqrt 3 }}\left( {15{{J}_{1}} - 21{{J}_{2}} - 4\gamma S + 5S + 18} \right),$$
$${{\tau }_{2}} = - \frac{1}{{12}}\left( { - 6\gamma + 15\gamma {{J}_{1}} - 12{{J}_{1}} + 45{{J}_{2}} + \gamma S + 4S} \right),$$
$${{\tau }_{3}} = - \frac{1}{{48}}\left( {36\gamma {{J}_{1}} + 63\gamma {{J}_{2}} + 12{{\gamma }^{2}}S + 12\gamma S} \right),$$
$$\begin{gathered} {{\tau }_{4}} = - \frac{1}{{48\sqrt 3 }} \\ \times \,\,\left( {216{{\gamma }^{2}}{{J}_{1}} - 108\gamma {{J}_{1}} + 405\gamma {{J}_{2}} + 36{{\gamma }^{2}}S + 36\gamma S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{5}} = \frac{1}{{64}}\left( { - 168{{\gamma }^{2}}{{J}_{1}} + 84\gamma {{J}_{1}} + 120{{J}_{1}} - 315\gamma {{J}_{2}}} \right. \\ \left. { - \,\,114{{J}_{2}} - 28{{\gamma }^{2}}S - 28\gamma S + 40S + 24} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{6}} = \frac{1}{{32\sqrt 3 }}\left( {72\gamma + 204\gamma {{J}_{1}} + 144{{J}_{1}} + 231\gamma {{J}_{2}}} \right. \\ \left. { - \,\,450{{J}_{2}} + 44{{\gamma }^{2}}S + 116\gamma S - 48S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{7}} = \frac{1}{{64}}\left( {264{{\gamma }^{2}}{{J}_{1}} - 132\gamma {{J}_{1}} + 264{{J}_{1}} + 495\gamma {{J}_{2}}} \right. \\ \left. { - \,\,78{{J}_{2}} + 44{{\gamma }^{2}}S + 12\gamma S + 88S + 72} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{8}} = \frac{1}{{384}}\left( {168\gamma + 1188\gamma {{J}_{1}} - 144{{J}_{1}} + 525\gamma {{J}_{2}}} \right. \\ \left. { + \,\,720{{J}_{2}} + 100{{\gamma }^{2}}S + 348\gamma S + 48S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{9}} = \frac{1}{{128\sqrt 3 }}\left( {1800{{\gamma }^{2}}{{J}_{1}} - 900\gamma {{J}_{1}} - 1032{{J}_{1}} + 3375\gamma {{J}_{2}}} \right. \\ \left. { + \,\,2784{{J}_{2}} + 300{{\gamma }^{2}}S + 316\gamma S - 344S - 72} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{10}}} = - \frac{1}{{128}}\left( {264\gamma + 1524\gamma {{J}_{1}} + 528{{J}_{1}} + 945\gamma {{J}_{2}}} \right. \\ \left. { - \,\,840{{J}_{2}} + 180{{\gamma }^{2}}S + 684\gamma S - 176S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{11}}} = \frac{1}{{128\sqrt 3 }}\left( {1080{{\gamma }^{2}}{{J}_{1}} - 540\gamma {{J}_{1}} + 552{{J}_{1}} + 2025\gamma {{J}_{2}}} \right. \\ \left. { - \,\,24{{J}_{2}} + 180{{\gamma }^{2}}S + 4\gamma S + 184S + 72} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{12}}} = \frac{1}{{3072}}\left( {2760{{\gamma }^{2}}{{J}_{1}} - 1380\gamma {{J}_{1}} - 6840{{J}_{1}}} \right. \\ + \,\,5175\gamma {{J}_{2}} + 15750{{J}_{2}} + 460{{\gamma }^{2}}S + 460\gamma S \\ \left. { - \,\,2280S - 888} \right){\text{,}} \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{13}}} = - \frac{5}{{768\sqrt 3 }}\left( {360\gamma + 4620\gamma {{J}_{1}} - 1296{{J}_{1}} + 903\gamma {{J}_{2}}} \right. \\ \left. { + \,\,7506{{J}_{2}} + 172{{\gamma }^{2}}S + 1108\gamma S + 432S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{14}}} = - \frac{1}{{512}}\left( {5160{{\gamma }^{2}}{{J}_{1}} - 2580\gamma {{J}_{1}} - 9720{{J}_{1}}} \right. \\ + \,\,9675\gamma {{J}_{2}} + 22230{{J}_{2}} + 860{{\gamma }^{2}}S + 1340 \gamma S \\ \left. { - \,\,3240S - 984} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{15}}} = \frac{5}{{256\sqrt 3 }}\left( {216\gamma + 2100\gamma {{J}_{1}} + 432{{J}_{1}} + 777\gamma {{J}_{2}}} \right. \\ \left. { + \,\,774{{J}_{2}} + 148{{\gamma }^{2}}S + 844\gamma S - 144S} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{16}}} = \frac{1}{{1024}}\left( {4440{{\gamma }^{2}}{{J}_{1}} - 2220\gamma {{J}_{1}} + 1560{{J}_{1}}} \right. \\ + \,\,8325\gamma {{J}_{2}} + 2370{{J}_{2}} + 740{{\gamma }^{2}}S - 220\gamma S \\ + \,\,520S + 24. \\ \end{gathered} $$
$$\begin{gathered} {{t}_{1}} = 4\omega _{1}^{2} + 3,\,\,\,\,{{t}_{2}} = 4\omega _{2}^{2} + 3,\,\,\,\,{{l}_{1}} = \sqrt {4\omega _{1}^{2} + 9} , \\ {\text{and}}\,\,\,\,{{l}_{2}} = \sqrt {4\omega _{2}^{2} + 9} . \\ \end{gathered} $$
$$\begin{gathered} \omega _{{01}}^{'} = \frac{1}{{\sqrt 2 }}\left( {1 + \left( { - 6{{\mu }^{2}} + \frac{{9\mu }}{2} - \frac{3}{4}} \right){{J}_{1}}} \right. \\ \left. { + \,\,\left( {\frac{{45\mu }}{8} + \frac{3}{{16}}} \right){{J}_{2}} + \left( {\frac{\mu }{2} - {{\mu }^{2}}} \right)S} \right). \\ \end{gathered} $$
$$\begin{gathered} \omega _{{02}}^{'} = \frac{1}{{192\sqrt 2 }}\sqrt {(248\,832{{\mu }^{2}} - 248\,832\mu + 9216} \\ \overline { + \,\,(2\,018\,304{{\mu }^{2}} - 2\,363\,904\mu + 138\,240){{J}_{1}}} \\ \overline { + \,\,(1\,596\,672{{\mu }^{2}} - 611\,712\mu + 380\,160){{J}_{2}}} \\ \overline { + \,\,( - 608\,256{{\mu }^{3}} + 1\,815\,552{{\mu }^{2}}} \\ \overline { - \,\,1\,336\,320\mu + 110\,592)S)} . \\ \end{gathered} $$
$${{\tau }_{{130}}} = \frac{{{{l}_{1}}}}{{2k{{\omega }_{1}}}},$$
$$\begin{gathered} {{\tau }_{{131}}} = \frac{1}{{576{{k}^{5}}{{l}_{1}}\omega _{1}^{3}}}{{J}_{1}}\left( { - 9504\gamma \omega {{{\text{1}}}^{6}} + 216\gamma \omega _{1}^{4}} \right. \\ - \,\,22\,788\gamma \omega _{1}^{2} + 5103\gamma + 11{\kern 1pt} {\kern 1pt} 264\omega _{1}^{{10}} - 27{\kern 1pt} 264\omega _{1}^{8} \\ \left. { + \,\,10\,176\omega _{1}^{6} + 26\,344\omega _{1}^{4} - 5076\omega _{1}^{2} + 729} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{132}}} = \frac{{ - 1}}{{768{{k}^{5}}{{l}_{1}}\omega _{1}^{3}}}{{J}_{2}}\left( { - 47\,520\gamma \omega _{1}^{6} + 7560\gamma \omega _{1}^{4}} \right. \\ - \,\,84\,780\gamma \omega _{1}^{2} + 18\,225\gamma + 9856\omega _{1}^{8} + 41\,984\omega _{1}^{6} \\ \left. { - \,\,5832\omega _{1}^{4} + 155\,844\omega _{1}^{2} - 35\,721} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{133}}} = \frac{1}{{216{{k}^{5}}{{l}_{1}}\omega _{1}^{3}}}S\left( { - 528\gamma \omega _{1}^{8} - 1524\gamma \omega _{1}^{6}} \right. \\ + \,\,1404\gamma \omega _{1}^{4} - 3429\gamma \omega _{1}^{2} + 729\gamma + 704\omega _{1}^{{10}} \\ \left. { - \,\,2688\omega _{1}^{8} - 1620\omega _{1}^{6} + 5386\omega _{1}^{4} - 3861\omega _{1}^{2} + 729} \right), \\ \end{gathered} $$
$${{\tau }_{{210}}} = - \frac{{4{{\omega }_{1}}}}{{k{{l}_{1}}}},$$
$$\begin{gathered} {{\tau }_{{211}}} = \frac{1}{{72{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{1}}\left( { - 9504\gamma \omega _{1}^{6} + 11\,016\gamma \omega _{1}^{4}} \right. \\ + \,\,1512\gamma \omega _{1}^{2} + 5103\gamma + 11\,264\omega _{1}^{{10}} - 15\,488\omega _{1}^{8} \\ \left. { + \,\,24\,896\omega _{1}^{6} - 4040\omega _{1}^{4} - 13\,824\omega _{1}^{2} + 729} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{212}}} = \frac{1}{{96{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{2}}\left( {47\,520\gamma \omega _{1}^{6} - 48\,600\gamma \omega _{1}^{4}} \right. \\ - \,\,7560\gamma \omega _{1}^{2} - 18\,225\gamma + 9856\omega _{1}^{8} - 17\,344\omega _{1}^{6} \\ \left. { + \,\,34\,200\omega _{1}^{4} + 7776\omega _{1}^{2} + 35\,721} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{213}}} = \frac{1}{{27{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}S\left( {528\gamma \omega _{1}^{8} - 204\gamma \omega _{1}^{6} + 540\gamma \omega _{1}^{4}} \right. \\ - \,\,27\gamma \omega _{1}^{2} + 729\gamma + 704\omega _{1}^{{10}} - 416\omega _{1}^{8} + 1220\omega _{1}^{6} \\ \left. { + \,\,1138\omega _{1}^{4} - 1917\omega _{1}^{2} + 729} \right), \\ \end{gathered} $$
$${{\tau }_{{230}}} = - \frac{{3\sqrt 3 \gamma }}{{2k{{l}_{1}}{{\omega }_{1}}}},$$
$$\begin{gathered} {{\tau }_{{231}}} = \frac{1}{{64\sqrt 3 {{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{1}}\left( {7168\gamma \omega _{1}^{{10}} - 3968\gamma \omega _{1}^{8}} \right. \\ + \,\,37\,632\gamma \omega _{1}^{6} - 66\,776\gamma \omega _{1}^{4} + 16\,092\gamma \omega _{1}^{2} - 729\gamma \\ - \,\,3584\omega _{1}^{{10}} + 9856\omega _{1}^{8} - 25056\omega _{1}^{6} + 33\,544\omega _{1}^{4} \\ \left. { + \,\,11\,340\omega _{1}^{2} - 5103} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{232}}} = \frac{{\sqrt 3 }}{{256{{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{2}}\left( {9856\gamma \omega _{1}^{8} - 8768\gamma \omega _{1}^{6}} \right. \\ + \,\,112\,712\gamma \omega _{1}^{4} + 109\,260\gamma \omega _{1}^{2} - 35\,721\gamma \\ + \,\,17\,920\omega _{1}^{{10}} - 45\,440\omega _{1}^{8} + 117\,600\omega _{1}^{6} \\ \left. { - \,\,150\,680\omega _{1}^{4} - 34\,020\omega _{1}^{2} + 18\,225} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{233}}} = \frac{1}{{216\sqrt 3 {{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}S\left( {4032\gamma \omega _{1}^{{10}} + 6624\gamma \omega _{1}^{8}} \right. \\ + \,\,14\,148\gamma \omega _{1}^{6} - 37\,386\gamma \omega _{1}^{4} + 30\,861\gamma \omega _{1}^{2} - 6561\gamma \\ + \,\,2816\omega _{1}^{{12}} - 4416\omega _{1}^{{10}} + 25616\omega _{1}^{8} + 13\,892\omega _{1}^{6} \\ \left. { - \,\,22\,140\omega _{1}^{4} + 30\,861\omega _{1}^{2} - 6561} \right), \\ \end{gathered} $$
$${{\tau }_{{310}}} = - \frac{{{{\omega }_{1}}\left( {4\omega _{1}^{2} + 1} \right)}}{{2k{{l}_{1}}}},$$
$$\begin{gathered} {{\tau }_{{311}}} = \frac{{ - 1}}{{576{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{1}}\left( { - 24\,192\gamma \omega _{1}^{8} - 69\,120\gamma \omega _{1}^{6}} \right. \\ + \,\,182\,952\gamma \omega _{1}^{4} - 105\,516\gamma \omega _{1}^{2} - 5103\gamma + 28\,672\omega _{1}^{{12}} \\ + \,\,116\,224\omega _{1}^{{10}} - 143\,232\omega _{1}^{8} + 210\,656\omega _{1}^{6} \\ \left. { - \,\,246\,664\omega _{1}^{4} + 110\,052\omega _{1}^{2} - 729} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{312}}} = \frac{{ - 1}}{{768{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{2}}\left( {120\,960\gamma \omega _{1}^{8} + 371\,520\gamma \omega _{1}^{6}} \right. \\ - \,\,830\,520\gamma \omega _{1}^{4} + 440\,100\gamma \omega _{1}^{2} + 18\,225\gamma \\ + \,\,39\,424\omega _{1}^{{10}} + 132\,480\omega _{1}^{8} - 37\,984\omega _{1}^{6} \\ \left. { + \,\,504\,792\omega _{1}^{4} - 470\,124\omega _{1}^{2} - 35\,721} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{313}}} = \frac{{ - 1}}{{216{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}S\left( {2112\gamma \omega _{1}^{{10}} + 7776\gamma \omega _{1}^{8}} \right. \\ - \,\,2652\gamma \omega _{1}^{6} + 6264\gamma \omega _{1}^{4} - 7263\gamma \omega _{1}^{2} \\ - \,\,729\gamma + 1792\omega _{1}^{{12}} + 11\,200\omega _{1}^{{10}} - 2256\omega _{1}^{8} \\ \left. { - \,\,3676\omega _{1}^{6} - 526\omega _{1}^{4} + 945\omega _{1}^{2} - 729} \right), \\ \end{gathered} $$
$${{\tau }_{{330}}} = \frac{{3\sqrt 3 \gamma }}{{2k{{l}_{1}}{{\omega }_{1}}}},$$
$$\begin{gathered} {{\tau }_{{331}}} = \frac{{ - 1}}{{64\sqrt 3 {{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{1}}\left( {7168\gamma \omega _{1}^{{10}} - 10\,880\gamma \omega _{1}^{8}} \right. \\ + \,\,28\,992\gamma \omega _{1}^{6} - 52\,952\gamma \omega _{1}^{4} + 12\,204\gamma \omega _{1}^{2} \\ - \,\,729\gamma - 3584\omega _{1}^{{10}} + 9856\omega _{1}^{8} - 25\,056\omega _{1}^{6} \\ \left. { + \,\,33\,544\omega _{1}^{4} + 11\,340\omega _{1}^{2} - 5103} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{332}}} = \frac{{ - \sqrt 3 }}{{256{{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{2}}\left( {9856\gamma \omega _{1}^{8} - 8768\gamma \omega _{1}^{6}} \right. \\ + \,\,112\,712\gamma \omega _{1}^{4} + 109\,260\gamma \omega _{1}^{2} - 35\,721\gamma \\ + \,\,17\,920\omega _{1}^{{10}} - 45\,440\omega _{1}^{8} + 117\,600\omega _{1}^{6} \\ \left. { - \,\,150\,680\omega _{1}^{4} - 34\,020\omega _{1}^{2} + 18\,225} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{333}}} = \frac{{ - 1}}{{216\sqrt 3 {{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}S\left( {4032\gamma \omega _{1}^{{10}} - 1152\gamma \omega _{1}^{8}} \right. \\ + \,\,4428\gamma \omega _{1}^{6} - 21\,834\gamma \omega _{1}^{4} + 26\,487\gamma \omega _{1}^{2} \\ - \,\,6561\gamma + 2816\omega _{1}^{{12}} - 4416\omega _{1}^{{10}} + 25\,616\omega _{1}^{8} \\ \left. { + \,\,13\,892\omega _{1}^{6} - 22\,140\omega _{1}^{4} + 30\,861\omega _{1}^{2} - 6561} \right), \\ \end{gathered} $$
$${{\tau }_{{410}}} = \frac{{3\sqrt 3 \gamma {{\omega }_{1}}}}{{2k{{l}_{1}}}},$$
$$\begin{gathered} {{\tau }_{{411}}} = - \frac{1}{{64\sqrt 3 {{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{1}}\left( {11\,264\gamma \omega _{1}^{{10}} - 21\,632\gamma \omega _{1}^{8}} \right. \\ + \,\,17\,216\gamma \omega _{1}^{6} + 8248\gamma \omega _{1}^{4} - 17\,280\gamma \omega _{1}^{2} + 729\gamma \\ - \,\,5632\omega _{1}^{{10}} + 2944\omega _{1}^{8} - 26\,656\omega _{1}^{6} + 31\,576\omega _{1}^{4} \\ \left. { - \,\,6696\omega _{1}^{2} + 5103} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{412}}} = \frac{{ - \sqrt 3 }}{{256{{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}{{J}_{2}}\left( { - 9856\gamma \omega _{1}^{8} - 41\,984\gamma \omega _{1}^{6}} \right. \\ + \,\,73\,624\gamma \omega _{1}^{4} - 3312\gamma \omega _{1}^{2} + 35\,721\gamma + 28\,160\omega _{1}^{{10}} \\ - \,\,18\,560\omega _{1}^{8} + 119\,840\omega _{1}^{6} - 131\,720\omega _{1}^{4} \\ \left. { + \,\,24\,840\omega _{1}^{2} - 18\,225} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{413}}} = \frac{1}{{216\sqrt 3 {{k}^{5}}l_{1}^{3}{{\omega }_{1}}}}S\left( { - 6336\gamma \omega _{1}^{{10}} + 21\,024\gamma \omega _{1}^{8}} \right. \\ + \,\,10\,620\gamma \omega _{1}^{6} - 44\,802\gamma \omega _{1}^{4} + 26\,973\gamma \omega _{1}^{2} \\ - \,\,6561\gamma + 2816\omega _{1}^{{12}} + 5312\omega _{1}^{{10}} - 27\,888\omega _{1}^{8} \\ \left. { + \,\,18\,212\omega _{1}^{6} - 10\,332\omega _{1}^{4} + 3645\omega _{1}^{2} - 6561} \right), \\ \end{gathered} $$
$${{\tau }_{{430}}} = \frac{{9 - 4\omega _{1}^{2}}}{{2k{{l}_{1}}{{\omega }_{1}}}},$$
$$\begin{gathered} {{\tau }_{{431}}} = \frac{1}{{576{{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{1}}\left( { - 114\,048\gamma \omega _{1}^{8} + 3456\gamma \omega _{1}^{6}} \right. \\ - \,\,77\,112\gamma \omega _{1}^{4} - 143\,856\gamma \omega _{1}^{2} + 45\,927\gamma \\ + \,\,135\,168\omega _{1}^{{12}} - 103\,936\omega _{1}^{{10}} + 91\,264\omega _{1}^{8} \\ \left. { + \,\,187\,104\omega _{1}^{6} - 2664\omega _{1}^{4} - 1944\omega _{1}^{2} + 6561} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{432}}} = \frac{1}{{768{{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}{{J}_{2}}\left( {570\,240\gamma \omega _{1}^{8} + 8640\gamma \omega _{1}^{6}} \right. \\ + \,\,210\,600\gamma \omega _{1}^{4} + 544\,320\gamma \omega _{1}^{2} - 164\,025\gamma \\ + \,\,39\,424\omega _{1}^{{10}} - 395\,392\omega _{1}^{8} - 80\,928\omega _{1}^{6} \\ \left. { - \,\,508\,680\omega _{1}^{4} - 973\,944\omega _{1}^{2} + 321\,489} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\tau }_{{433}}} = \frac{1}{{216{{k}^{5}}l_{1}^{3}\omega _{1}^{3}}}S\left( {2112\gamma \omega _{1}^{{10}} - 12\,480\gamma \omega _{1}^{8}} \right. \\ - \,\,3780\gamma \omega _{1}^{6} - 1296\gamma \omega _{1}^{4} - 22113\gamma \omega _{1}^{2} + 6561\gamma \\ + \,\,8448\omega _{1}^{{12}} - 4288\omega _{1}^{{10}} - 8816\omega _{1}^{8} + 18876\omega _{1}^{6} \\ \left. { + \,\,4086\omega _{1}^{4} - 21\,627\omega _{1}^{2} + 6561} \right). \\ \end{gathered} $$
$$\begin{gathered} {{A}_{1}} = \frac{{21\gamma }}{{16}} + \left( {\frac{{297\gamma }}{{32}} - \frac{9}{8}} \right){{J}_{1}} + \left( {\frac{{525\gamma }}{{128}} + \frac{{45}}{8}} \right){{J}_{2}} \\ + \,\,\left( {\frac{{87\gamma }}{{32}} + \frac{{25\omega _{1}^{4}}}{{54}} - \frac{{25\omega _{1}^{2}}}{{54}} + \frac{{37}}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{A}_{2}} = - \frac{{3\sqrt 3 }}{8} + \left( { - \frac{{75\sqrt 3 \gamma }}{{16}} + \frac{{50\omega _{1}^{4}}}{{3\sqrt 3 }} - \frac{{50\omega _{1}^{2}}}{{3\sqrt 3 }} + \frac{{55\sqrt 3 }}{{16}}} \right){{J}_{1}} \\ + \,\,\left( {\frac{{1125\sqrt 3 \gamma }}{{64}} + \frac{{29\sqrt 3 }}{2}} \right){{J}_{2}} \\ + \,\,\left( {\frac{{79\gamma }}{{16\sqrt 3 }} + \frac{{25\omega _{1}^{4}}}{{9\sqrt 3 }} - \frac{{25\omega _{1}^{2}}}{{9\sqrt 3 }} - \frac{5}{{4\sqrt 3 }}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{A}_{3}} = - \frac{{27\gamma }}{8} + \left( { - \frac{{\gamma \omega _{1}^{4}}}{6} + \frac{{\gamma \omega _{1}^{2}}}{6} - \frac{{2511\gamma }}{{64}} + \frac{{\omega _{1}^{4}}}{{12}}} \right. \\ \left. { - \,\,\frac{{\omega _{1}^{2}}}{{12}} + \frac{{117}}{{64}}} \right){{J}_{1}} + \left( {\frac{{1143\gamma }}{{128}} - \frac{{5\omega _{1}^{4}}}{{16}} + \frac{{5\omega _{1}^{2}}}{{16}} - \frac{{675}}{{64}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{\gamma \omega _{1}^{4}}}{{36}} + \frac{{\gamma \omega _{1}^{2}}}{{36}} - \frac{{399\gamma }}{{32}} - \frac{{7\omega _{1}^{4}}}{{18}} + \frac{{7\omega _{1}^{2}}}{{18}} - \frac{{39}}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{B}_{1}} = - \frac{{33\gamma }}{{16}} + \left( { - \frac{{381\gamma }}{{32}} - \frac{{33}}{8}} \right){{J}_{1}} + \left( {\frac{{105}}{{16}} - \frac{{945\gamma }}{{128}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{171\gamma }}{{32}} - \frac{{5\omega _{1}^{4}}}{6} + \frac{{5\omega _{1}^{2}}}{6} - \frac{1}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{B}_{2}} = - \frac{{9\sqrt 3 }}{8} + \left( {\frac{{135\sqrt 3 \gamma }}{{16}} - 10\sqrt 3 \omega _{1}^{4} + 10\sqrt 3 \omega _{1}^{2}} \right. \\ \left. { - \,\,\frac{{435\sqrt 3 }}{{16}}} \right){{J}_{1}} + \left( {\frac{{3\sqrt 3 }}{8} - \frac{{2025\sqrt 3 \gamma }}{{64}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{\sqrt 3 \gamma }}{{16}} - \frac{{5\omega _{1}^{4}}}{{\sqrt 3 }} + \frac{{5\omega _{1}^{2}}}{{\sqrt 3 }} - \frac{{25\sqrt 3 }}{4}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{B}_{3}} = \frac{{27\gamma }}{8} + \left( { - \frac{1}{6}7\gamma \omega _{1}^{4} + \frac{{7\gamma \omega _{1}^{2}}}{6} + \frac{{1827\gamma }}{{64}} + \frac{{7\omega _{1}^{4}}}{{12}} - \frac{{7\omega _{1}^{2}}}{{12}}} \right. \\ \left. { + \,\,\frac{{495}}{{64}}} \right){{J}_{1}} + \left( {\frac{{1017\gamma }}{{128}} - \frac{{35\omega _{1}^{4}}}{{16}} + \frac{{35\omega _{1}^{2}}}{{16}} - \frac{{675}}{{64}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{7\gamma \omega _{1}^{4}}}{{36}} + \frac{{7\gamma \omega _{1}^{2}}}{{36}} + \frac{{387\gamma }}{{32}} + \frac{{11\omega _{1}^{4}}}{6} - \frac{{11\omega _{1}^{2}}}{6} + \frac{{27}}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{C}_{1}} = - \frac{{3\sqrt 3 }}{8} + \left( {\frac{{75\sqrt 3 {{\gamma }^{2}}}}{8} - \frac{{75\sqrt 3 \gamma }}{{16}} - \frac{{43\sqrt 3 }}{8}} \right){{J}_{1}} \\ + \,\,\left( {\frac{{1125\sqrt 3 \gamma }}{{64}} + \frac{{29\sqrt 3 }}{2}} \right){{J}_{2}} + \left( {\frac{{25\sqrt 3 {{\gamma }^{2}}}}{{16}} + \frac{{79\gamma }}{{16\sqrt 3 }} - \frac{{43}}{{8\sqrt 3 }}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{C}_{2}} = - \frac{{33\gamma }}{4} + \left( { - 60\gamma - \frac{{33}}{2}} \right){{J}_{1}} + \left( {\frac{{105}}{4} - \frac{{945\gamma }}{{32}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{45{{\gamma }^{2}}}}{8} - \frac{{51\gamma }}{2} + \frac{{11}}{2}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} {{C}_{3}} = \frac{{27\sqrt 3 }}{{32}} - \frac{{99\sqrt 3 }}{{32}}{{\gamma }^{2}} + \left( { - \frac{1}{8}357\sqrt 3 {{\gamma }^{2}} - \frac{{27\sqrt 3 \gamma }}{8}} \right. \\ \left. { + \,\,\frac{{243\sqrt 3 }}{{16}}} \right){{J}_{1}} + \left( { - 21\sqrt 3 {{\gamma }^{2}} - \frac{{585\sqrt 3 \gamma }}{{128}} - \frac{{4293\sqrt 3 }}{{128}}} \right){{J}_{2}} \\ + \,\,\left( { - 4\sqrt 3 {{\gamma }^{3}} - 16\sqrt 3 {{\gamma }^{2}} + \frac{{9\sqrt 3 \gamma }}{{16}} + \frac{{81\sqrt 3 }}{{16}}} \right)S. \\ \end{gathered} $$
$$\begin{gathered} A_{1}^{'} = - \frac{{3\sqrt 3 }}{{16}} + \left( {\frac{{75\sqrt 3 {{\gamma }^{2}}}}{{16}} - \frac{{75\sqrt 3 \gamma }}{{32}} - \frac{{43\sqrt 3 }}{{16}}} \right){{J}_{1}} \\ + \,\,\left( {\frac{{1125\sqrt 3 \gamma }}{{128}} + \frac{{29\sqrt 3 }}{4}} \right){{J}_{2}} \\ + \,\,\left( {\frac{{25\sqrt 3 {{\gamma }^{2}}}}{{32}} + \frac{{79\gamma }}{{32\sqrt 3 }} - \frac{{43}}{{16\sqrt 3 }}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} A_{2}^{'} = - \frac{{21\gamma }}{8} + \left( {\frac{9}{4} - \frac{{45\gamma }}{2}} \right){{J}_{1}} + \left( { - \frac{{525\gamma }}{{64}} - \frac{{45}}{4}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{25{{\gamma }^{2}}}}{{16}} - \frac{{27\gamma }}{4} - \frac{3}{4}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} A_{3}^{'} = \frac{{9\sqrt 3 }}{{64}} + \frac{{63\sqrt 3 }}{{64}}{{\gamma }^{2}} + \left( {\frac{{21\sqrt 3 {{\gamma }^{2}}}}{4} + \frac{{27\sqrt 3 \gamma }}{8} + \frac{{87\sqrt 3 }}{{32}}} \right){{J}_{1}} \\ + \,\,\left( {\frac{{399\sqrt 3 {{\gamma }^{2}}}}{{64}} - \frac{{2655\sqrt 3 \gamma }}{{256}} - \frac{{1563\sqrt 3 }}{{256}}} \right){{J}_{2}} \\ + \,\,\left( {\frac{{19\sqrt 3 {{\gamma }^{3}}}}{{16}} + \frac{{23\sqrt 3 {{\gamma }^{2}}}}{8} - \frac{{37\sqrt 3 \gamma }}{{32}} + \frac{{29\sqrt 3 }}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} B_{1}^{'} = \frac{{ - 9\sqrt 3 }}{{16}} + \left( { - \frac{1}{{16}}135\sqrt 3 {{\gamma }^{2}} + \frac{{135\sqrt 3 \gamma }}{{32}} - \frac{{69\sqrt 3 }}{{16}}} \right){{J}_{1}} \\ + \,\,\left( {\frac{{3\sqrt 3 }}{{16}} - \frac{{2025\sqrt 3 \gamma }}{{128}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{1}{{32}}45\sqrt 3 {{\gamma }^{2}} - \frac{{\sqrt 3 \gamma }}{{32}} - \frac{{23\sqrt 3 }}{{16}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} B_{2}^{'} = \frac{{33\gamma }}{8} + \left( {30\gamma + \frac{{33}}{4}} \right){{J}_{1}} + \left( {\frac{{945\gamma }}{{64}} - \frac{{105}}{8}} \right){{J}_{2}} \\ + \,\,\left( {\frac{{45{{\gamma }^{2}}}}{{16}} + \frac{{51\gamma }}{4} - \frac{{11}}{4}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} B_{3}^{'} = \frac{{27\sqrt 3 }}{{64}} - \frac{{99\sqrt 3 }}{{64}}{{\gamma }^{2}} + \left( { - \frac{1}{{16}}159\sqrt 3 {{\gamma }^{2}} - \frac{{63\sqrt 3 \gamma }}{8}} \right. \\ \left. { + \,\,\frac{{171\sqrt 3 }}{{32}}} \right){{J}_{1}} + \left( { - \frac{1}{2}21\sqrt 3 {{\gamma }^{2}} + \frac{{5355\sqrt 3 \gamma }}{{256}} - \frac{{549\sqrt 3 }}{{256}}} \right){{J}_{2}} \\ + \,\,\left( { - 2\sqrt 3 {{\gamma }^{3}} - \frac{{95\sqrt 3 {{\gamma }^{2}}}}{{16}} + \frac{{51\sqrt 3 \gamma }}{{32}} + \frac{{57\sqrt 3 }}{{32}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} C_{1}^{'} = - \frac{{33\gamma }}{8} + \left( { - \frac{{381\gamma }}{{16}} - \frac{{33}}{4}} \right){{J}_{1}} + \left( {\frac{{105}}{8} - \frac{{945\gamma }}{{64}}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{171\gamma }}{{16}} - \frac{{5\omega _{1}^{4}}}{3} + \frac{{5\omega _{1}^{2}}}{3} - \frac{1}{{16}}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} C_{2}^{'} = \frac{{3\sqrt 3 }}{4} + \left( {\frac{{75\sqrt 3 \gamma }}{8} - \frac{{100\omega _{1}^{4}}}{{3\sqrt 3 }} + \frac{{100\omega _{1}^{2}}}{{3\sqrt 3 }} - \frac{{55\sqrt 3 }}{8}} \right){{J}_{1}} \\ + \,\,\left( { - \frac{1}{{32}}1125\sqrt 3 \gamma - 29\sqrt 3 } \right){{J}_{2}} \\ + \,\,\left( { - \frac{{79\gamma }}{{8\sqrt 3 }} - \frac{{50\omega _{1}^{4}}}{{9\sqrt 3 }} + \frac{{50\omega _{1}^{2}}}{{9\sqrt 3 }} + \frac{5}{{2\sqrt 3 }}} \right)S, \\ \end{gathered} $$
$$\begin{gathered} C_{3}^{'} = \frac{{9\gamma }}{4} + \left( { - \frac{{\gamma \omega _{1}^{4}}}{3} + \frac{{\gamma \omega _{1}^{2}}}{3} + \frac{{585\gamma }}{{32}} + \frac{{\omega _{1}^{4}}}{6}} \right. \\ \left. { - \,\,\frac{{\omega _{1}^{2}}}{6} + \frac{{153}}{{32}}} \right){{J}_{1}} + \left( {\frac{{1683\gamma }}{{64}} - \frac{{5\omega _{1}^{4}}}{8} + \frac{{5\omega _{1}^{2}}}{8} - \frac{{45}}{8}} \right){{J}_{2}} \\ + \,\,\left( { - \frac{{\gamma \omega _{1}^{4}}}{{18}} + \frac{{\gamma \omega _{1}^{2}}}{{18}} + \frac{{123\gamma }}{{16}} + \omega _{1}^{4} - \omega _{1}^{2} + \frac{3}{{16}}} \right)S. \\ \end{gathered} $$

Appendix B

$${{\lambda }_{1}} = - \frac{{\left( {124\omega _{1}^{4} - 696\omega _{1}^{2} + 81} \right)\omega _{2}^{2}}}{{72{{k}^{4}}\left( {5\omega _{1}^{2} - 1} \right)}},$$
$$\begin{gathered} {{\lambda }_{2}} = \frac{1}{{5184{{k}^{8}}\omega _{1}^{2}{{{(5\omega _{1}^{2} - 1)}}^{2}}}}\left( { - 4\,035\,312\gamma \omega _{1}^{{12}}} \right. \\ + \,\,10\,137\,744\gamma \omega _{1}^{{10}} - 26\,489\,052\gamma \omega _{1}^{8} \\ + \,\,25\,840\,674\gamma \omega _{1}^{6} - 11\,490\,741\gamma \omega _{1}^{4} + 2\,081\,700\gamma \omega _{1}^{2} \\ - \,\,115\,911\gamma + 4\,782\,592\omega _{1}^{{16}} - 15\,177\,216\omega _{1}^{{14}} \\ + \,\,42\,383\,392\omega _{1}^{{12}} - 71\,013\,888\omega _{1}^{{10}} \\ + \,\,88\,451\,956\omega _{1}^{8} - 63\,758\,214\omega _{1}^{6} + 23\,719\,116\omega _{1}^{4} \\ \left. { - \,\,3\,975\,318\omega _{1}^{2} + 231\,822} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\lambda }_{3}} = - \frac{1}{{6912{{k}^{8}}l_{1}^{6}\omega _{1}^{2}{{{\left( {5\omega _{1}^{2} - 1} \right)}}^{2}}}}\left( {2\,424\,463\,360\gamma \omega _{1}^{{20}}} \right. \\ - \,\,5\,210\,711\,040\gamma \omega _{1}^{{18}} - 5\,281\,319\,680\gamma \omega _{1}^{{16}} \\ + \,\,116\,827\,200\gamma \omega _{1}^{{14}} - 16\,324\,148\,080\gamma \omega _{1}^{{12}} \\ - \,\,14\,186\,461\,200\gamma \omega _{1}^{{10}} - 12\,442\,142\,960\gamma \omega _{1}^{8} \\ + \,\,44\,394\,836\,220\gamma \omega _{1}^{6} - 31\,697\,352\,540\gamma \omega _{1}^{4} \\ + \,\,7\,373\,711\,070\gamma \omega _{1}^{2} - 272\,806\,380\gamma \\ - \,\,1\,146\,880\omega _{1}^{{20}} + 106\,358\,784\omega _{1}^{{18}} + 74\,665\,472\omega _{1}^{{16}} \\ - \,\,20\,873\,856\omega _{1}^{{14}} + 7\,454\,499\,104\omega _{1}^{{12}} \\ + \,\,18\,607\,904\,640\omega _{1}^{{10}} + 764\,789\,904\omega _{1}^{8} \\ - \,\,10\,925\,728\,578\omega _{1}^{6} + 11\,960\,040\,339\omega _{1}^{4} \\ \left. { - \,\,3\,079\,247\,886\omega _{1}^{2} + 167\,403\,915} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\lambda }_{4}} = \frac{1}{{15\,552{{k}^{8}}\omega _{1}^{2}{{{(5\omega _{1}^{2} - 1)}}^{2}}}}\left( {7680\gamma \omega _{1}^{{14}}} \right. \\ + \,\,6\,945\,840\gamma \omega _{1}^{{12}} - 12\,611\,760\gamma \omega _{1}^{{10}} + 25\,870\,680\gamma \omega _{1}^{8} \\ - \,\,26\,663\,172\gamma \omega _{1}^{6} + 10\,706\,391\gamma \omega _{1}^{4} - 1\,802\,898\gamma \omega _{1}^{2} \\ + \,\,115\,911\gamma + 2\,391\,296\omega _{1}^{{16}} - 6\,778\,368\omega _{1}^{{14}} \\ + \,\,16\,643\,312\omega _{1}^{{12}} - 29\,865\,936\omega _{1}^{{10}} + 39\,840\,584\omega _{1}^{8} \\ - \,\,29\,874\,612\omega _{1}^{6} + 10\,926\,087\omega _{1}^{4} - 1\,824\,930\omega _{1}^{2} \\ + \,\,115\,911), \\ \end{gathered} $$
$${{\lambda }_{5}} = - \frac{{{{\omega }_{1}}{{\omega }_{2}}\left( {64\omega _{1}^{2}\omega _{2}^{2} + 43} \right)}}{{6\left( {2\omega _{1}^{2} - 1} \right)\left( {5\omega _{1}^{2} - 1} \right)\left( {2\omega _{2}^{2} - 1} \right)\left( {5\omega _{2}^{2} - 1} \right)}},$$
$$\begin{gathered} {{\lambda }_{6}} = \frac{1}{{6912{{k}^{8}}l_{2}^{4}{{\omega }_{1}}\omega _{2}^{3}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \\ \times \,\,\left( { - 4\,143\,052\,800\gamma \omega _{1}^{{22}} + 50\,548\,320\,000\gamma \omega _{1}^{{20}}} \right. \\ - \,\,292\,533\,113\,952\gamma \omega _{1}^{{18}} + 1\,044\,822\,333\,744\gamma \omega _{1}^{{16}} \\ - \,\,2\,533\,408\,170\,750\gamma \omega _{1}^{{14}} + 4\,099\,108\,158\,441\gamma \omega _{1}^{{12}} \\ - \,\,4\,344\,366\,562\,695\gamma \omega _{1}^{{10}} + 2\,975\,735\,955\,627\gamma \omega _{1}^{8} \\ - \,\,1\,275\,916\,988\,763\gamma \omega _{1}^{6} + 316\,536\,373\,800\gamma \omega _{1}^{4} \\ - \,\,38\,262\,811\,644\gamma \omega _{1}^{2} + 1\,641\,473\,424\gamma \\ + \,\,4\,910\,284\,800\omega _{1}^{{26}} - 64\,819\,404\,800\omega _{1}^{{24}} \\ + \,\,381\,133\,983\,232\omega _{1}^{{22}} - 1\,308\,895\,361\,536\omega _{1}^{{20}} \\ + \,\,3\,027\,950\,673\,472\omega _{1}^{{18}} - 5\,068\,970\,906\,000\omega _{1}^{{16}} \\ + \,\,6\,356\,325\,754\,182\omega _{1}^{{14}} - 6\,064\,313\,775\,697\omega _{1}^{{12}} \\ + \,\,4\,401\,863\,479\,895\omega _{1}^{{10}} - 2\,376\,831\,948\,731\omega _{1}^{8} \\ + \,\,901\,632\,336\,515\omega _{1}^{6} - 215\,606\,368\,144\omega _{1}^{4} \\ \left. { + \,\,26\,852\,210\,460\omega _{1}^{2} - 1\,264\,969\,872} \right), \\ {{\lambda }_{7}} = \frac{1}{{221\,184{{k}^{8}}l_{1}^{4}l_{2}^{4}\omega _{1}^{3}\omega _{2}^{3}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \\ \times \,\,\left( {7\,954\,661\,376\,000\gamma \omega _{1}^{{28}} - 75\,665\,475\,993\,600\gamma \omega _{1}^{{26}}} \right. \\ + \,\,271\,796\,964\,618\,240\gamma \omega _{1}^{{24}} \\ - \,\,392\,452\,603\,600\,896\gamma \omega _{1}^{{22}} \\ - \,\,743\,019\,213\,445\,632\gamma \omega _{1}^{{20}} \\ + \,\,5\,026\,406\,733\,756\,288\gamma \omega _{1}^{{18}} \\ - \,\,8\,199\,977\,411\,126\,736\gamma \omega _{1}^{{16}} \\ + \,\,2\,480\,178\,180\,194\,208\gamma \omega _{1}^{{14}} \\ + \,\,7\,707\,731\,622\,963\,156\gamma \omega _{1}^{{12}} \\ - \,\,10\,860\,565\,766\,311\,674\gamma \omega _{1}^{{10}} \\ + \,\,6\,410\,650\,098\,483\,891\gamma \omega _{1}^{8} \\ - \,\,1\,817\,366\,957\,136\,288\gamma \omega _{1}^{6} \\ \end{gathered} $$
$$\begin{gathered} + \,\,190\,229\,194\,365\,615\gamma \omega _{1}^{4} + 1\,907\,613\,925\,524\gamma \omega _{1}^{2} \\ - \,\,819\,762\,622\,848\gamma + 3\,595\,147\,673\,600\omega _{1}^{{30}} \\ - \,\,36\,693\,604\,761\,600\omega _{1}^{{28}} + 177\,193\,300\,197\,376\omega _{1}^{{26}} \\ - \,\,408\,408\,655\,630\,336\omega _{1}^{{24}} + \,\,466\,874\,767\,163\,392\omega _{1}^{{22}} \\ - \,\,481\,277\,982\,848\,256\omega _{1}^{{20}} + \,\,722\,429\,204\,786\,944\omega _{1}^{{18}} \\ - \,\,469\,818\,883\,881\,072\omega _{1}^{{16}} - 2\,205\,579\,406\,937\,152\omega _{1}^{{14}} \\ + \,\,5\,331\,499\,990\,034\,668\omega _{1}^{{12}} - \,\,4710891159667894\omega _{1}^{{10}} \\ + \,\,2\,092\,219\,222\,798\,245\omega _{1}^{8} - 669\,951\,544\,657\,824\omega _{1}^{6} \\ + \,\,204\,250\,361\,728\,617\omega _{1}^{4} \\ \left. { - \,\,29\,806\,499\,049\,588\omega _{1}^{2} + 1\,138\,117\,039\,488} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\lambda }_{8}} = \frac{1}{{2592{{k}^{8}}l_{2}^{4}{{\omega }_{1}}\omega _{2}^{3}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \times \\ \times \,\,\left( { - 1\,022\,856\,000\gamma \omega _{1}^{{22}} + 10\,573\,725\,600\gamma \omega _{1}^{{20}}} \right. \\ - \,\,44\,561\,688\,996\gamma \omega _{1}^{{18}} + 95\,725\,845\,264\gamma \omega _{1}^{{16}} \\ - \,\,110\,052\,799\,869\gamma \omega _{1}^{{14}} + 55\,003\,455\,603\gamma \omega _{1}^{{12}} \\ + \,\,14\,775\,636\,246\gamma \omega _{1}^{{10}} - 37\,352\,497\,374\gamma \omega _{1}^{8} \\ + \,\,24\,047\,980\,095\gamma \omega _{1}^{6} - 9\,101\,068\,221\gamma \omega _{1}^{4} \\ + \,\,{\text{2}}\,{\text{125}}\,{\text{150}}\,{\text{500}}\gamma \omega _{1}^{2} - 194\,895\,072\gamma \\ + \,\,{\text{306}}\,{\text{892}}\,{\text{800}}\omega _{1}^{{26}} - 4\,051\,212\,800\omega _{1}^{{24}} \\ + \,\,{\text{21}}\,{\text{710}}\,{\text{426}}\,{\text{752}}\omega _{1}^{{22}} - 58\,230\,013\,696\omega _{1}^{{20}} \\ + \,\,{\text{76}}\,{\text{873}}\,{\text{083}}\,{\text{496}}\omega _{1}^{{18}} - 11\,721\,065\,666\omega _{1}^{{16}} \\ - \,\,147\,577\,874\,007\omega _{1}^{{14}} + {\text{296}}\,{\text{579}}\,{\text{114}}\,{\text{015}}\omega _{1}^{{12}} \\ - \,\,307\,750\,140\,490\omega _{1}^{{10}} + {\text{192}}\,{\text{822}}\,{\text{509}}\,{\text{200}}\omega _{1}^{8} \\ - \,\,73\,067\,002\,675\omega _{1}^{6} + {\text{15}}\,{\text{572}}\,{\text{123}}\,{\text{675}}\omega _{1}^{4} \\ \left. { - \,\,1\,547\,915\,772\omega _{1}^{2} + {\text{47}}\,{\text{062}}\,{\text{944}}} \right), \\ \end{gathered} $$
$${{\lambda }_{9}} = - \frac{{\omega _{1}^{2}\left( {124\omega _{2}^{4} - 696\omega _{2}^{2} + 81} \right)}}{{72{{k}^{4}}\left( {5\omega _{2}^{2} - 1} \right)}},$$
$$\begin{gathered} {{\lambda }_{{10}}} = \frac{1}{{5184{{k}^{8}}\omega _{2}^{2}{{{\left( {5\omega _{2}^{2} - 1} \right)}}^{2}}}}\left( { - 4\,035\,312\gamma \omega _{2}^{{12}}} \right. \\ + \,\,{\text{10}}\,{\text{137}}\,{\text{744}}\gamma \omega _{2}^{{10}} - 26\,489\,052\gamma \omega _{2}^{8} \\ + {\text{25}}\,{\text{840}}\,{\text{674}}\gamma \omega _{2}^{6} - 11\,490\,741\gamma \omega _{2}^{4} \\ + \,\,{\text{2}}\,{\text{081}}\,{\text{700}}\gamma \omega _{2}^{2} - 115\,911\gamma + 4\,782\,592\omega _{2}^{{16}} \\ - \,\,15\,177\,216\omega _{2}^{{14}} + {\text{42}}\,{\text{383}}\,{\text{392}}\omega _{2}^{{12}} - 71\,013\,888\omega _{2}^{{10}} \\ + \,\,{\text{88}}\,{\text{451}}\,{\text{956}}\omega _{2}^{8} - 63\,758\,214\omega _{2}^{6} \\ \left. { + \,\,{\text{23}}\,{\text{719}}\,{\text{116}}\omega _{2}^{4} - 3\,975\,318\omega _{2}^{2} + 231\,822} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\lambda }_{{11}}} = \frac{1}{{6912{{k}^{8}}l_{2}^{6}\omega _{2}^{2}{{{\left( {5\omega _{2}^{2} - 1} \right)}}^{2}}}}\left( { - 2\,424\,463\,360\gamma \omega _{2}^{{20}}} \right. \\ + \,\,{\text{5}}\,{\text{210}}\,{\text{711}}\,{\text{040}}\gamma \omega _{2}^{{18}} + {\text{5}}\,{\text{281}}\,{\text{319}}\,{\text{680}}\gamma \omega _{2}^{{16}} \\ - \,\,116\,827\,200\gamma \omega _{2}^{{14}} + {\text{16}}\,{\text{324}}\,{\text{148}}\,{\text{080}}\gamma \omega _{2}^{{12}} \\ + \,\,{\text{14}}\,{\text{186}}\,{\text{461}}\,{\text{200}}\gamma \omega _{2}^{{10}} + {\text{12}}\,{\text{442}}\,{\text{142}}\,{\text{960}}\gamma \omega _{2}^{8} \\ - \,\,44\,394\,836\,220\gamma \omega _{2}^{6} + {\text{31}}\,{\text{697}}\,{\text{352}}\,{\text{540}}\gamma \omega _{2}^{4} \\ - \,\,7\,373\,711\,070\gamma \omega _{2}^{2} + {\text{272}}\,{\text{806}}\,{\text{380}}\gamma \\ + \,\,{\text{1}}\,{\text{146}}\,{\text{880}}\omega _{2}^{{20}} - 106\,358\,784\omega _{2}^{{18}} \\ - \,\,74\,665\,472\omega _{2}^{{16}} + {\text{20}}\,{\text{873}}\,{\text{856}}\omega _{2}^{{14}} \\ - \,\,7\,454\,499\,104\omega _{2}^{{12}} - 18\,607\,904\,640\omega _{2}^{{10}} \\ - \,\,764\,789\,904\omega _{2}^{8} + {\text{10}}\,{\text{925}}\,{\text{728}}\,{\text{578}}\omega _{2}^{6} \\ - \,\,11\,960\,040\,339\omega _{2}^{4} \\ \left. { + \,\,{\text{3}}\,{\text{079}}\,{\text{247}}\,{\text{886}}\omega _{2}^{2} - 167\,403\,915} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\lambda }_{{12}}} = \frac{1}{{15\,552{{k}^{8}}\omega _{2}^{2}{{{\left( {5\omega _{2}^{2} - 1} \right)}}^{2}}}}\left( {7680\gamma \omega _{2}^{{14}} + {\text{6}}\,{\text{945}}\,{\text{840}}\gamma \omega _{2}^{{12}}} \right. \\ - \,\,12\,611\,760\gamma \omega _{2}^{{10}} + {\text{25}}\,{\text{870}}\,{\text{680}}\gamma \omega _{2}^{8} - 26\,663\,172\gamma \omega _{2}^{6} \\ + \,\,{\text{10}}\,{\text{706}}\,{\text{391}}\gamma \omega _{2}^{4} - 1\,802\,898\gamma \omega _{2}^{2} + 115\,911\gamma \\ + \,\,{\text{2}}\,{\text{391}}\,{\text{296}}\omega _{2}^{{16}} - 6\,778\,368\omega _{2}^{{14}} + {\text{16}}\,{\text{643}}\,{\text{312}}\omega _{2}^{{12}} \\ - \,\,29\,865\,936\omega _{2}^{{10}} + {\text{39}}\,{\text{840}}\,{\text{584}}\omega _{2}^{8} - 29\,874\,612\omega _{2}^{6} \\ \left. { + \,\,{\text{10}}\,{\text{926}}\,{\text{087}}\omega _{2}^{4} - 1\,824\,930\omega _{2}^{2} + 115\,911} \right). \\ \end{gathered} $$
$$\begin{gathered} {{\nu }_{1}} = - \frac{1}{{3456{{k}^{8}}l_{2}^{4}\omega _{1}^{2}\omega _{2}^{2}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \\ \times \,\,\left( { - 6\,366\,643\,200\gamma \omega _{1}^{{24}} + {\text{76}}\,{\text{119}}\,{\text{609}}\,{\text{600}}\gamma \omega _{1}^{{22}}} \right. \\ - \,\,423\,416\,494\,368\gamma \omega _{1}^{{20}} + {\text{1}}\,{\text{464}}\,{\text{413}}\,{\text{187}}\,{\text{312}}\gamma \omega _{1}^{{18}} \\ - \,\,3\,483\,591\,690\,366\gamma \omega _{1}^{{16}} + {\text{5}}\,{\text{610}}\,{\text{855}}\,{\text{551}}\,{\text{625}}\gamma \omega _{1}^{{14}} \\ - \,\,6\,004\,081\,529\,811\gamma \omega _{1}^{{12}} + {\text{4}}\,{\text{224}}\,{\text{080}}\,{\text{080}}\,{\text{287}}\gamma \omega _{1}^{{10}} \\ - \,\,1\,912\,601\,954\,637\gamma \omega _{1}^{8} + {\text{530}}\,{\text{631}}\,{\text{043}}\,{\text{200}}\gamma \omega _{1}^{6} \\ - \,\,82\,756\,473\,498\gamma \omega _{1}^{4} + {\text{6}}\,{\text{586}}\,{\text{030}}\,{\text{080}}\gamma \omega _{1}^{2} \\ - \,\,208\,948\,896\gamma + {\text{7}}\,{\text{545}}\,{\text{651}}\,{\text{200}}\omega _{1}^{{28}} \\ - \,\,97\,761\,484\,800\omega _{1}^{{26}}{\text{ + 565}}\,{\text{083}}\,{\text{033}}\,{\text{088}}\omega _{1}^{{24}} \\ - \,\,1\,944\,304\,135\,680\omega _{1}^{{22}} + {\text{4}}\,{\text{591}}\,{\text{455}}\,{\text{636}}\,{\text{416}}\omega _{1}^{{20}} \\ - \,\,7\,992\,409\,667\,600\omega _{1}^{{18}} + {\text{10}}\,{\text{662}}\,{\text{340}}\,{\text{941}}\,{\text{030}}\omega _{1}^{{16}} \\ - \,\,11\,057\,507\,932\,369\omega _{1}^{{14}} + {\text{8}}\,{\text{829}}\,{\text{328}}\,{\text{954}}\,{\text{935}}\omega _{1}^{{12}} \\ - \,\,5\,271\,937\,450\,459\omega _{1}^{{10}} + {\text{2}}\,{\text{247}}\,{\text{221}}\,{\text{681}}\,{\text{147}}\omega _{1}^{8} \\ - \,\,640\,211\,364\,704\omega _{1}^{6} + {\text{111}}\,{\text{489}}\,{\text{580}}\,{\text{820}}\omega _{1}^{4} \\ \left. { - \,\,10\,585\,058\,832\omega _{1}^{2} + {\text{417}}\,{\text{897}}\,{\text{792}}} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\nu }_{2}} = \frac{1}{{110\,592{{k}^{8}}l_{1}^{6}l_{2}^{6}\omega _{1}^{2}\omega _{2}^{2}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \\ \times \,\,\left( {998\,299\,874\,099\,200\gamma \omega _{1}^{{32}}} \right. \\ - \,\,8\,306\,124\,534\,579\,200\gamma \omega _{1}^{{30}} \\ + \,\,{\text{26}}\,{\text{665}}\,{\text{318}}\,{\text{804}}\,{\text{684}}\,{\text{800}}\gamma \omega _{1}^{{28}} \\ - \,\,34\,087\,897\,459\,818\,496\gamma \omega _{1}^{{26}} \\ - \,\,25\,990\,461\,531\,058\,176\gamma \omega _{1}^{{24}} \\ + \,\,{\text{172}}\,{\text{727}}\,{\text{414}}\,{\text{711}}\,{\text{826}}\,{\text{432}}\gamma \omega _{1}^{{22}} \\ - \,\,182\,613\,749\,248\,943\,360\gamma \omega _{1}^{{20}} \\ - \,\,383\,573\,044\,575\,693\,952\gamma \omega _{1}^{{18}} \\ + \,\,{\text{94}}\,{\text{250}}\,{\text{075}}\,{\text{753}}\,{\text{205}}\,{\text{960}}\gamma \omega _{1}^{{16}} \\ - \,\,181\,904\,158\,349\,463\,296\gamma \omega _{1}^{{14}} \\ - \,\,1\,363\,275\,708\,631\,653\,492\gamma \omega _{1}^{{12}} \\ + \,\,{\text{1}}\,{\text{894}}\,{\text{491}}\,{\text{887}}\,{\text{408}}\,{\text{932}}\,{\text{914}}\gamma \omega _{1}^{{10}} \\ - \,\,1\,195\,290\,897\,411\,901\,919\gamma \omega _{1}^{8} \\ + \,\,{\text{398}}\,{\text{277}}\,{\text{829}}\,{\text{415}}\,{\text{828}}\,{\text{880}}\gamma \omega _{1}^{6} \\ - \,\,66\,407\,299\,541\,089\,947\gamma \omega _{1}^{4} \\ + \,\,{\text{4}}\,{\text{874}}\,{\text{339}}\,{\text{414}}\,{\text{802}}\,{\text{780}}\gamma \omega _{1}^{2} \\ - \,\,57\,522\,811\,042\,944\gamma \\ + \,\,57\,522\,362\,777\,600\omega _{1}^{{34}} \\ - \,\,663\,138\,625\,126\,400\omega _{1}^{{32}} \\ + \,\,{\text{3}}\,{\text{149}}\,{\text{706}}\,{\text{890}}\,{\text{838}}\,{\text{016}}\omega _{1}^{{30}} \\ - \,\,5\,363\,635\,079\,217\,152\omega _{1}^{{28}} \\ - \,\,7\,309\,594\,619\,674\,624\omega _{1}^{{26}} \\ {\text{ + }}\,\,{\text{36}}\,{\text{894}}\,{\text{469}}\,{\text{146}}\,{\text{263}}\,{\text{552}}\omega _{1}^{{24}} \\ - \,\,46\,738\,197\,622\,095\,872\omega _{1}^{{22}} \\ + \,\,{\text{37}}\,{\text{959}}\,{\text{089}}\,{\text{699}}\,{\text{583}}\,{\text{488}}\omega _{1}^{{20}} \\ - \,\,43\,207\,667\,883\,916\,288\omega _{1}^{{18}} \\ + \,\,{\text{57}}\,{\text{435}}\,{\text{679}}\,{\text{691}}\,{\text{611}}\,{\text{760}}\omega _{1}^{{16}} \\ + \,\,{\text{85}}\,{\text{820}}\,{\text{735}}\,{\text{703}}\,{\text{012}}\,{\text{640}}\omega _{1}^{{14}} \\ - \,\,277\,460\,386\,134\,250\,892\omega _{1}^{{12}} \\ + \,\,{\text{191}}\,{\text{575}}\,{\text{562}}\,{\text{528}}\,{\text{479}}\,{\text{230}}\omega _{1}^{{10}} \\ - \,\,17\,345\,806\,635\,014\,505\omega _{1}^{8} \\ - \,\,11\,126\,877\,658\,993\,008\omega _{1}^{6} \\ - \,\,3\,033\,351\,705\,639\,213\omega _{1}^{4} \\ + \,\,{\text{1}}\,{\text{036}}\,{\text{681}}\,{\text{878}}\,{\text{314}}\,{\text{628}}\omega _{1}^{2} \\ \left. { - \,\,39\,006\,374\,898\,816} \right), \\ \end{gathered} $$
$$\begin{gathered} {{\nu }_{3}} = - \frac{1}{{5184{{k}^{8}}l_{2}^{4}\omega _{1}^{2}\omega _{2}^{2}{{{(5{{\omega }_{1}}{{\omega }_{2}} - 2)}}^{2}}{{{(5{{\omega }_{1}}{{\omega }_{2}} + 2)}}^{2}}}} \\ \times \,\,\left( { - 2\,635\,411\,200\gamma \omega _{1}^{{24}} + {\text{25}}\,{\text{550}}\,{\text{755}}\,{\text{200}}\gamma \omega _{1}^{{22}}} \right. \\ - \,\,95\,913\,855\,408\gamma \omega _{1}^{{20}} + {\text{143}}\,{\text{537}}\,{\text{920}}\,{\text{608}}\gamma \omega _{1}^{{18}} \\ + \,\,{\text{35}}\,{\text{809}}\,{\text{658}}\,{\text{076}}\gamma \omega _{1}^{{16}} - 456\,652\,515\,684\gamma \omega _{1}^{{14}} \\ + \,\,{\text{750}}\,{\text{154}}\,{\text{966}}\,{\text{938}}\gamma \omega _{1}^{{12}} - 652\,561\,306\,230\gamma \omega _{1}^{{10}} \\ + \,\,{\text{351}}\,{\text{577}}\,{\text{961}}\,{\text{511}}\gamma \omega _{1}^{8} - 122\,748\,257\,256\gamma \omega _{1}^{6} \\ + \,\,{\text{26}}\,{\text{559}}\,{\text{441}}\,{\text{405}}\gamma \omega _{1}^{4} - 2\,869\,807\,752\gamma \omega _{1}^{2} \\ + \,\,{\text{104}}\,{\text{474}}\,{\text{448}}\gamma + {\text{1}}\,{\text{886}}\,{\text{412}}\,{\text{800}}\omega _{1}^{{28}} \\ - \,\,24\,440\,371\,200\omega _{1}^{{26}} + {\text{131}}\,{\text{347}}\,{\text{497}}\,{\text{472}}\omega _{1}^{{24}} \\ - \,\,374\,735\,320\,320\omega _{1}^{{22}} + {\text{617}}\,{\text{944}}\,{\text{051}}\,{\text{712}}\omega _{1}^{{20}} \\ - \,\,569\,347\,205\,480\omega _{1}^{{18}} + {\text{147}}\,{\text{911}}\,{\text{786}}\,{\text{388}}\omega _{1}^{{16}} \\ + \,\,{\text{307}}\,{\text{240}}\,{\text{212}}\,{\text{620}}\omega _{1}^{{14}} - 405\,652\,445\,934\omega _{1}^{{12}} \\ + \,\,{\text{199}}\,{\text{992}}\,{\text{203}}\,{\text{162}}\omega _{1}^{{10}} - 14\,434\,586\,137\omega _{1}^{8} \\ - \,\,28\,318\,307\,840\omega _{1}^{6} + {\text{12}}\,{\text{353}}\,{\text{226}}\,{\text{557}}\omega _{1}^{4} \\ \left. { - \,\,1\,937\,603\,592\omega _{1}^{2} + {\text{104}}\,{\text{474}}\,{\text{448}}} \right). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhawna Singh, Shalini, K., Prasad, S.N. et al. Study the Non-Linear Stability of Non-Collinear Libration Point in the Restricted Three-Body Configuration When the Shapes of the Primaries are Taken as Heterogeneous and Finite-Straight Segment. Sol Syst Res 57, 261–277 (2023). https://doi.org/10.1134/S0038094623030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623030024

Keywords:

Navigation