Skip to main content
Log in

Seasonal Variation of Martian Surface Temperature over Gale Crater and Surroundings

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Temperature plays an inevitable role in molding the Martian surface. Analysis of the seasonal variation of evening temperature over Gale Crater and its surroundings from Martian years MY 12 to MY 35 (equivalent Earth years 1976–2020) was carried out using data from different orbiter missions such as InfraRed Thermal Mapper (IRTM) data from Viking Orbiter Mission, Thermal emission spectrometer (TES), data from Mars Global Surveyor (MGS) and Thermal Emission Imaging System (THEMIS) data from Mars Odyssey Mission. Bands corresponding to 20 µm for IRTM data, 15 µm for TES data and 9 µm for THEMIS data were used for determination of surface temperature and diurnal temperature variation was estimated from 4 to 6 am and 4 to 6 pm images. It was observed that summer season had the highest evening temperature of about 269 K from MY 12 to MY 35. It was further observed that autumn and winter seasons had low temperature varying between 184 to 256 K and 189 to 272 K respectively for these two seasons whereas spring and summer exhibited high temperature ranging between 190 to 282 K and 223 to 283 K respectively for these two seasons. From the analysis of temperature at different Ls during the three different years MY 12, MY 24 and MY 32, it was noted that the temperature graph followed almost similar pattern. In all these 3 years, there was a hike in the temperature after Ls 150°. Due to global dust storm activity in MY 12 and MY 25 during spring equinox, a sudden increase in temperature was observed. Diurnal temperature variation was found out from these pre-dawn and dusk temperatures. Autumn fall and summer season showed the highest diurnal temperature variation. Significant drops in surface temperature too were observed during MY 26 (more than 30 K from MY 25) and MY 32 (more than 45 K from MY 31) on an average considering all the seasons. Correlation of drop in surface temperature with the surface pressure was confirmed from Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) data. The THEMIS derived surface temperature accurately correlated with REMS derived surface temperature of MAPE (Mean Absolute Percentage Error) about 4.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Ahern, A.A., Rogers, A.D., Edwards, C.S., and Piqueux, S., Thermophysical properties and surface heterogeneity of landing sites on Mars from overlapping Thermal Emission Imaging System (THEMIS) observations, J. Geophys. Res.: Planets, 2021, vol. 126, no. 6, pp. 1–30. https://doi.org/10.1029/2020JE006713

    Article  Google Scholar 

  2. Angell, P., Werner, H., and Christensen, P., Diurnal and seasonal temperature variations along the Mars Curiosity rover traverse : A comparison of THEMIS remote sensing data with ground truth, Lunar Planet. Sci. Conf., 2020, vol. 52, no. 2548, p. 15.

  3. Audourd, Thermophysical properties of Gale crater plains along Curiosity traverse, Lunar Planet. Sci. Conf., 2014, vol. 45, pp. 1784–1785.

  4. Avdan, U. and Jovanovska, G., Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data, J. Sensors, 2016, vol. 2016, p. 1480307. https://doi.org/10.1155/2016/1480307

    Article  Google Scholar 

  5. Balme, M. and Greeley, R., Dust devils on Earth and Mars, Rev. Geophys., 2006, vol. 44, p. RG3003.

    Article  ADS  Google Scholar 

  6. Bandfield, J.L. and Smith, M.D., Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data, Icarus, 2002, vol. 161, pp. 47–65.

    Article  ADS  Google Scholar 

  7. Bandfield, J.L., Wolff M.J., and Smith, M.D., Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth, J. Geophys. Res., 2003, vol. 108, no. E11, p. 5115. https://doi.org/10.1029/2003JE002115

    Article  Google Scholar 

  8. Bedford, C.C., et al., Geochemical variation in the Stimson formation of Gale crater: Provenance, mineral sorting, and a comparison with modern Martian dunes, Icarus, 2020, vol. 341, p. 113622.

    Article  Google Scholar 

  9. Bennett, K.A., Fenton, L., and Bell, J.F., III, The albedo of Martian dunes: Insights into aeolian activity and dust devil formation, Aeolian Res., 2016, vol. 26, pp. 89–100.

    Article  ADS  Google Scholar 

  10. Bridges, N.T., Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit, J. Geophys. Res., 2017, vol. 122, pp. 2077–2110.

    Article  Google Scholar 

  11. Christensen, P.R., Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: Analysis of Viking and Mariner 9 data, J. Geophys. Res., 1998, vol. 103, no. E1, pp. 1733–1746.

    Article  ADS  Google Scholar 

  12. Christensen, P.R., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission, Space Sci. Rev., 2001, vol. 110, pp. 85–130.

    Article  ADS  Google Scholar 

  13. Christensen, P.R., Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res., 2011, vol. 116, p. e10008.

    Article  Google Scholar 

  14. Clancy, R.T., An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, J. Geophys. Res. E Planets, 2000, vol. 105, no. E4, pp. 9553–9571. https://doi.org/10.1029/1999JE001089

    Article  ADS  Google Scholar 

  15. Conrath, B.J., Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 2000, vol. 105, vol. 1999, pp. 9509–9519.

  16. Crisp, D., IRTM brightness temperature maps of the Martian south polar region during the polar night: The cold spots don’t move, Technical Report 93-06, Part 1, Houston, TX: Lunar and Planetary institute, 1993.

  17. Davies, J., Guinan, J., Howell, K., Stewart, H., and Verling, E., MESH South West Approaches Canyons Survey (MESH Cruise 01-07-01) Final Report, MESH Mapping European Seabed Habitat, 2008.

  18. Edwards, C.S., Nowicki, K.J., Christensen, P.R., Hill, J., Gorelick, N., and Murray, K., Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res. E Planets, 2011, vol. 116, no. 10, pp. 1–21. https://doi.org/10.1029/2010JE003755

    Article  Google Scholar 

  19. Fenton, L.K., Geissler, P.E., and Haberle, R.M., Global warming and climate forcing by recent albedo changes on Mars, Nature, 2007, vol. 446, no. 7136, pp. 646–649.

    Article  ADS  Google Scholar 

  20. Fergason, R.L., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES–derived thermal inertia, J. Geophys. Res., 2006, vol. 111, p. E02S21.

    Article  Google Scholar 

  21. Fergason, R.L., Christensen, P.R., and Kieffer, H.H., High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications, J. Geophys. Res., 2006, vol. 111, p. E12004.

    Article  ADS  Google Scholar 

  22. Forget, F., The present and past climates of planet Mars, Eur. Phys. J. Conf., 2009, vol. 1, pp. 235–248.

    Article  Google Scholar 

  23. Gangale, T. and Dudley-Rowley, M., Issues and options for a Martian calander, Planet. Space Sci., 2005, vol. 53, pp. 1483–1495.

    Article  ADS  Google Scholar 

  24. Grotzinger, J.P., Gupta, S., Malin, M.C., Rubin, D.M., Schieber, J., Siebach, K., Sumner, D.Y., Stack, K.M., Vasavada, A.R., Arvidson, R.E., Edgar, L., Fischer, W.F., Grant, J.A., Griffes, J., Kah, L.C., Lamb, M.P., Lewis, K.W., Mangold, N., Minitti, M.E., Palucis, M., Rice, M., Williams, R.M.E., Yingst, R.A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W.E., Dromart, G., Edgett, K.S., Ewing, R.C., Gellert, R.J., Hurowitz, A., Kocurek, G., Mahaffy, P., McBride, M. J., McLennan, S.M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T.J., Vaniman, D., Wiensand, R.C., and Wilson, S.A., Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars, Science, 2015, vol. 350, no. 6257. https://doi.org/10.1126/science.aac7575

  25. Gomiz-Elvira, J., et al., REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev., 2012, vol. 170, pp. 583–640.

    Article  ADS  Google Scholar 

  26. Grotzinger, J.P., Curiosity’s mission of exploration at Gale crater, Mars, Elements, 2015, vol. 11, pp. 19–26.

    Article  Google Scholar 

  27. Guzewich, S.D., Atmospheric tides in Gale Crater, Mars, Icarus, 2016, vol. 268, pp. 37–49. https://doi.org/10.1016/j.icarus.2015.12.028

    Article  ADS  Google Scholar 

  28. Haberle, R.M., Gomez-Elvira, J., et al., Preliminary interpretation of the REMS pressure data from the first 100 sols of MSL mission, J. Geophys. Res: Planets, 2014, vol. 119, pp. 440–453. https://doi.org/10.1002/2013JE004488

    Article  ADS  Google Scholar 

  29. Haberle, R.M., Kahre, M.A., and Hollingsworth, J.L., Documentation of the NASA/Ames Legacy Mars Global Climate model: Simulation of the present seasonal water cycle, Icarus, 2019, vol. 333, pp. 140–164.

    Article  ADS  Google Scholar 

  30. Hobbs, W.S., Paull, D.J., and Bourke, M.C., Aeolian processes and dune morphology in Gale Crater, Icarus, 2010, vol. 210, pp. 102–115.

    Article  ADS  Google Scholar 

  31. Kieffer, H.H., Thermal model for analysis of Mars infrared mapping, J. Geophys. Res.: Planets, 2013, vol. 118, pp. 451–470.

    Article  ADS  Google Scholar 

  32. Kieffer, H.H., et al., Infrared thermal mapping experiment: The Viking Mars orbiter, Icarus, 1972, vol. 16, pp. 47–56.

    Article  ADS  Google Scholar 

  33. Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., and Jakosky, B.M., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 1977, vol. 82, no. 28, pp. 4249–4291.

    Article  ADS  Google Scholar 

  34. Kuziakina, M., Gura, D., and Zverok, D., GIS analysis of promising landing sites for manned flight to Mars, E3S Web of Conferences, 2019, vol. 138, pp. 1–8.

  35. Liu, W., Li, J., Zhang, Y., Zhao, L., and Cheng, Q., Preflight radiometric calibration of TIS sensor onboard SDG-1 satellite and estimation of its LST retrieval ability, Remote Sens., 2021, vol. 13, no. 16, p. 3242. https://doi.org/10.3390/rs13163242

    Article  ADS  Google Scholar 

  36. Martin, T.Z. and Bridges, N.T., Near-surface temperatures at proposed Mars Exploration Rover landing sites, J. Geophys. Res., 2003, vol. 108, no. E12, p. 8089.

    Article  Google Scholar 

  37. Martin, T.Z. and Richardson, M.I., New dust opacity mapping from Viking infrared thermal mapper data, J. Geophys. Res., 1993, vol. 98, no. E6, pp. 10941–10949.

    Article  ADS  Google Scholar 

  38. Martínez, G.M., Newman, C.N., De Vicente-Retortillo, A., Fischer, E., Renno, N.O., Richardson, M.I., Fairén, A.G., Genzer, M., Guzewich, S.D., Haberle, R.M., Harri, A.M., Kemppinen, O., Lemmon, M.T., Smith, M.D., de la Torre-Juárez, M., and Vasavada, A.R., The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to Curiosity, Space Sci. Rev., 2017, vol. 212, nos. 1–2, pp. 295–338.

    Article  ADS  Google Scholar 

  39. Mellon, M.T., et al., High-resolution thermal inertia mapping from the Mars Global Surveyor thermal emission spectrometer, Icarus, 2000, vol. 148, pp. 437–455.

    Article  ADS  Google Scholar 

  40. Piqueux, S., Byrne, S., Kieffer, H.H., Titus, T.N., and Hansen, C.J., Enumeration of Mars years and seasons since the beginning of telescopic exploration, Icarus, 2015, vol. 251, pp. 332–338.

    Article  ADS  Google Scholar 

  41. Presley, M.A. and Christensen, P.R., Thermal conductivity measurements of particulate materials 2. Results, J. Geophys. Res., 1997, vol. 102, no. E3, pp. 6551–6566.

    Article  ADS  Google Scholar 

  42. Sebastian, E., et al., The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars, Sensors, 2010, vol. 10, no. 10, pp. 9211–9231. https://doi.org/10.3390/s101009211

    Article  ADS  Google Scholar 

  43. Sekertekin, A., and Bonafoni, S., Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation, Remote Sens., 2020, vol. 12, p. 294. https://doi.org/10.3390/rs12020294

    Article  ADS  Google Scholar 

  44. Sheppard R.Y., Merging perspectives on secondary minerals on Mars: A review of ancient water-rock interactions in Gale crater inferred from orbital and in-situ observations, Minerals, 2021, vol. 11, no. 9. https://doi.org/10.3390/min11090986

  45. Silvestro, S., Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae, Geophys. Res. Lett., 2011, vol. 38, p. L20201.

    Article  ADS  Google Scholar 

  46. Singh, R.P., Thermal Infrared Imaging Spectrometer for Mars Orbiter Mission, Curr. Sci., 2015, vol. 109, no. 6, pp. 1097–1105.

    Google Scholar 

  47. Smith, M.D., Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 2004, vol. 167, pp. 148–165.

    Article  ADS  Google Scholar 

  48. Smith, M.D. and Guzewich, S.D., The Mars global dust storm of 2018, 49th Int. Conf. Environ. Syst., 2019.

  49. Smith, M.D., Bandfield, J.L., Christensen, P.R., and Richardson, M.I., Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth, J. Geophys. Res., 2003, vol. 108, no. E11, p. 5115. https://doi.org/10.1029/2003JE002115

    Article  Google Scholar 

  50. Smith, M.D., Schofield, J.T., and McCleese, D.J., Radiometric comparison of Mars climate sounder and thermal emission spectrometer measurements, Icarus, 2013, vol. 225, no. 1, pp. 28–39. https://doi.org/10.1016/j.icarus.2013.03.007

    Article  ADS  Google Scholar 

  51. Soffen, G.A. and Snyder, C.W., The first Viking mission to Mars, Science, 1976, vol. 193, pp. 759–765.

    Article  ADS  Google Scholar 

  52. Sobrino, J.A., Surface temperature of the planet Earth from satellite data, Remote Sens., 2020, vol. 12, p. 218. https://doi.org/10.3390/rs12020218

    Article  ADS  Google Scholar 

  53. Spiga, A., Forget, F., Dolla, B., Vinatier, S., Melchiorri, R., Drossart, P., Gendrin, A., Gondet, B., and Bibring, J.P., Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Meteorological maps, J. Geophys. Res., 2007, vol. 112, p. E08S15. https://doi.org/10.1029/2006JE002871

    Article  Google Scholar 

  54. Swanson, D.A., On the relationship among values of the same summary measure of error when it is used across multiple characteristics at the same point in time: An examination of MALPE and MAPE, Review of Economics and Finance, 2015.

  55. Tanaka, K.L. and Hayward, R.K., Mars’ north circum-polar dunes: Distribution, sources, and migration history, Planetary Dunes Workshop, 2008.

  56. Vasavada, A.R., Paige, D.A., and Wood, S.E., Near-surface temperature on Mercury and the Moon and the stability of polar ice deposits, Icarus, 1999, vol. 141, pp. 179–193.

    Article  ADS  Google Scholar 

  57. Vasavada, A.R., Piqueux, S., Lewis, K.W., Lemmon, M.T., and Smith, M.D., Thermophysical properties along Curiosity’s transverse in Gale crater, Mars, derived from REMS ground temperature sensor, Icarus, 2017, vol. 284, pp. 372–386.

    Article  ADS  Google Scholar 

  58. Vaugen, D.F. and Zimbekman, J.R., Emissivity effects on the surface temperature of Mars as measured by the Infrared thermal mapper, Lunar Planet. Sci. Conf., 1991, pp. 1433–1434.

  59. Wilson, R.J. and Richardson, M.I., The Martian atmosphere during the Viking mission, infrared measurements of atmospheric temperatures revisited, Icarus, 2000, vol. 145, pp. 555–579.

    Article  ADS  Google Scholar 

  60. Wilson, S.A. and Zimbelman, J.R., Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars, J. Geophys. Res., 2004, vol. 109, p. e10003.

    Article  ADS  Google Scholar 

  61. Wray, J.J., Gale crater: the Mars Science Laboratory/Curiosity Rover landing site, Int. J. Astrobiol., 2013, vol. 12, no. 1, pp. 25–38.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge NASA PDS Geoscience Node for providing us with IRTM, TES, THEMIS and Curiosity REMS data. We also thank Mars Climate Database v5.3 for providing us with surface pressure values for deriving Rover equivalent surface pressure. Financial support for this work under Mars Orbiter Mission Announcement of Opportunity (MOM-AO) project from Space Application Centre, Indian Space Research Organization, Department of Space, Government of India also acknowledged.

Funding

Financial support through a project grant under an Announcement of Opportunity (AO) for Mars Orbiter Mission (Mangalyan) project from Indian Space Research Organization, Department of Space through the Scheme ISRO/SSPO/MOM-AO/2016-17 and grant no. 19013/28/ 2016-sec.2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nayama Valsa Scariah, Mili Ghosh Nee Lala or A. P. Krishna.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHORS CONTRIBUTION

Conceptualization: Nayama Valsa Scariah, Mili Ghosh Nee Lala, Akhouri Pramod Krishna;

Methodology: Nayama Valsa Scariah, Mili Ghosh Nee Lala, Akhouri Pramod Krishna;

Formal analysis and investigation: Nayama Valsa Scariah;

Data curation and software: Nayama Valsa Scariah;

Writing-Original draft preparation: Nayama Valsa Scariah;

Writing-Review and editing: Nayama Valsa Scariah, Mili Ghosh Nee Lala, Akhouri Pramod Krishna;

Funding acquisition: Mili Ghosh Nee Lala and Akhouri Pramod Krishna;

Resources: Mili Ghosh Nee Lala and Akhouri Pramod Krishna;

Supervision: Mili Ghosh Nee Lala and Akhouri Pramod Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayama Valsa Scariah, Lala, M.G. & Krishna, A.P. Seasonal Variation of Martian Surface Temperature over Gale Crater and Surroundings. Sol Syst Res 57, 14–24 (2023). https://doi.org/10.1134/S0038094623010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623010045

Keywords:

Navigation