Skip to main content
Log in

Comet 2I/Borisov in Comparison with Comets of the Solar System

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The brief review summarizes data on the chemical and mineral composition, as well as on the physical properties, of the first extrasolar comet 2I/Borisov, obtained from observations that were carried out from September 2019 to the end of March 2020. It is noted that the qualitative chemical composition of the volatile and mineral components comet 2I/Borisov is similar to the composition of comets in the Solar System, but there are differences that indicate the specific conditions for the formation of its nucleus in a circumstellar gas and dust disk. Different release rates of CO and H2O molecules in the vicinity of perihelion indicate the possible heterogeneity of the comet’s nucleus, which was formed from more homogeneous ice blocks, but differing in composition. These constituent blocks could have formed over a wide range of radial distances: from the snow line of H2O to the CO snow line. Their accumulation in the comet’s nucleus indicates large-scale mixing of protocometary bodies in the circumstellar disk. No spectra of finely crystalline magnesium silicates were found in cometary coma of 2I/Borisov, which can be interpreted as the absence of a significant amount of gas and dust transfer from the inner hot regions of the disk to the outside, into the zone of formation of protocometary bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Bailer-Jones, C.A.L., Farnocchia, D., Ye, Q., Meech, K.J., and Micheli, M., A search for the origin of the interstellar comet 2I/Borisov, Astron. Astrophys., 2020, vol. 634, p. A14.

    Article  ADS  Google Scholar 

  2. Bannister, M.T., Opitom, C., Fitzsimmons, A., Moulane, Y., Jehin, E., Seligman, D., Rousselot, P., Knight, M.M., Marsset, M., Schwamb, M.E., et al., Interstellar comet 2I/Borisov as seen by MUSE: C2, NH2 and red CN detections, Am. Astron. Soc. J., 2020. https://arxiv.org/abs/2001.11605.

  3. Biver, N., Bockelée-Morvan, D., Paubert, G., Moreno, R., Crovisier, J., Boissier, J., Bertrand, E., Boussier, H., Kugel, F., McKay, A., Dello Russo, N., and DiSanti, M.A., The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS), Astron. Astrophys., 2018, vol. 619, p. A127.

    Article  ADS  Google Scholar 

  4. Bockelée-Morvan, D. and Biver, N., The composition of cometary ices, Philos. Trans. R. Soc. A, 2017, vol. 375, no. 2097, p. 20160252.

    Article  ADS  Google Scholar 

  5. Bodewits, D., Noonan, J.W., Feldman, P.D., Bannister, M.T., Farnocchia, D., Harris, W.M., Li, J.-Y., Mandt, K., Parker, J.Wm., and Xing, Z., The carbon monoxide-rich interstellar comet 2I/Borisov, Nat. Astron., 2020, vol. 4, pp. 867–871.

    Article  ADS  Google Scholar 

  6. Bolin, B.T., Lisse, C.M., Kasliwal, M.M., Quimby, R., Tan, H., Copperwheat, C., Fernandez, Y., Lin, Z.-Y., Morbidelli, A., Abe, L., et al., Characterization of the nucleus, morphology and activity of interstellar comet 2I/Borisov by optical and near-infrared GROWTH, Apache Point, IRTF, ZTF and Keck observations, Astrophys. J., 2020, vol. 160, no. 1, p. 26.

    Google Scholar 

  7. Busarev, V.V., Petrova, E.V., Shcherbina, M.P., Ikonnikova, N.P., Burlak, M.A., and Belinski, A.A., Interstellar comet 2I/Borisov: Dust composition from multiband photometry and modelling, Mon. Not. R. Astron. Soc., 2021, vol. 502, no. 2, pp. 1882–1894.

    Article  ADS  Google Scholar 

  8. Cameron, A.G.W., Physics of the primitive solar accretion disk, Moon and Planets, 1978, vol. 18, no. 1, pp. 5–40.

    Article  ADS  Google Scholar 

  9. Cameron, A.G.W. and Pine, M.R., Numerical models of the primitive solar nebula, Icarus, 1973, vol. 18, no. 3, pp. 377–406.

    Article  ADS  Google Scholar 

  10. Cordiner, M.A., Milam, S.N., Biver, N., Bockelee-Morvan, D., Roth, N.X., Bergin, E.A., Jehin, E., Remijan, A.J., Charnley, S.B., Mumma, M.J., et al., Unusually high CO abundance of the first active interstellar comet, Nat. Astron., 2020, vol. 4, pp. 861–866.

    Article  ADS  Google Scholar 

  11. de León, J., Licandro, J., Serra-Ricart, M., Cabrera-Lavers, A., Font Serra, J., Scarpa R., de la Fuente Marcos C., and de la Fuente Marcos, R., Interstellar visitors: A physical characterization of comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4m GTC, Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 9, p. 131.

    ADS  Google Scholar 

  12. de León, J., Licandro, J., de la Fuente Marcos, C., de la Fuente Marcos, R., Lara, L.M., Moreno, F., Pinilla-Alonso, N., Serra-Ricart, M., De Prá, M., Tozzi, G.P., et al., Visible and near-infrared observations of interstellar comet 2I/Borisov with the 10.4-m GTC and the 3.6-m TNG telescopes, Mon. Not. R. Astron. Soc., 2020, vol. 495, no. 2, pp. 2053–2062.

    Article  ADS  Google Scholar 

  13. Dorofeeva, V.A., Chemical and isotope composition of comet 67P/Churyumov–Gerasimenko: The Rosetta–Philae mission results reviewed in the context of cosmogony and cosmochemistry, Sol. Syst. Res., 2020, vol. 54, no. 2, pp. 96–120.

    Article  ADS  Google Scholar 

  14. Dorofeeva, V.A., The role of radial transport in forming minor bodies of the outer Solar System, Sol. Syst. Res., 2021, vol. 56, no. 3, pp. 168–182.

    Article  ADS  Google Scholar 

  15. Dorofeeva, V.A. and Makalkin, A.B., Evolyutsiya rannei Solnechnoi sistemy. Kosmokhimicheskie i fizicheskie aspekty (Evolution of the Early Solar System. Cosmochemical and Physical Aspects), Moscow: Editorial URSS, 2004.

  16. Dybczyński, P.A., Królikowska, M., and Wysoczańska, R., Kruger 60 as a home system for 2I/Borisov—a case study, 2019. arXiv:1909.10952v2.2019.

  17. Fitzsimmons, A., Hainaut, O., Meech, K., Jehin, E., Moulane, Y., Opitom, C., Yang, B., Keane, J.V., Kleyna, J.T., Micheli, M., and Snodgrass, C., Detection of CN gas in interstellar object 2I/Borisov, Astrophys. J. Lett., 2019, vol. 885, no. 1, p. L9.

    Article  ADS  Google Scholar 

  18. Fray, N. and Schmitt, B., Sublimation of ices of astrophysical interest: A bibliographic review, Planet. Space Sci., 2009, vol. 57, nos. 14–15, pp. 2053–2080.

    Article  ADS  Google Scholar 

  19. Guilbert-Lepoutre, A., Survival of amorphous water ice on Centaurs, Astron. J., 2012, vol. 144, no. 4, p. 97.

    Article  ADS  Google Scholar 

  20. Gulkis, S., Allen, M., von Allmen, P., Beaudin, G., Biver, N., Bockelee-Morvan, D., Choukroun, M., Crovisier, J., Davidsson, B.J.R., Encrenaz, P., et al., Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko, Science, 2015, vol. 347, no. 6220, p. aaa0709. https://doi.org/10.1126/science.aaa0709

    Article  Google Scholar 

  21. Guzik, P. and Drahus, M., Gaseous atomic nickel in the coma of interstellar comet 2I/Borisov, Nature, 2021, vol. 593, no. 7859, pp. 375–378.

    Article  ADS  Google Scholar 

  22. Guzik, P., Drahus, M., Rusek, K., Waniak, W., Cannizzaro, G., and Marazuela, I.P., Interstellar comet gb00234, The Astronomer’s Telegram, 2019, no. 13100.

  23. Guzik, P., Drahus, M., Rusek, K., Waniak, W., Cannizzaro, G., and Marazuela, I.P., Initial characterization of interstellar comet 2I/Borisov, Nat. Astron., 2020, vol. 4, p. 53–57.

    Article  ADS  Google Scholar 

  24. Hallan, T. and Wiegert, P., The dynamics of interstellar asteroids and comets within the Galaxy: An assessment of local candidate source regions for 1I/Oumuamua and 2I/Borisov, 2020. arXiv:1911.02473v2.2020.

  25. Hansen, K.C., Altwegg, K., Berthelier, J.-J., Bieler, A., Biver, N., Bockelée-Morvan, D., Calmonte, U., Capaccioni, F., Combi, M.R., de Keyser, J., et al., Evolution of water production of 67P/Churyumov–Gerasimenko: An empirical model and a multi-instrument study, Mon. Not. R. Astron. Soc., 2016, vol. 462, pp. S491–S506.

    Google Scholar 

  26. Hayashi, C., Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, Prog. Theor. Phys. Suppl., 1981, no. 70, pp. 35–53.

  27. Hui, M.-T., Ye, Q.-Z., Fohring, D., Hung, D., and Tholen, D.J., Physical characterisation of interstellar comet 2I/2019 Q4 (Borisov), Astron. J., 2020, vol. 160, no. 2, p. 92.

    Article  ADS  Google Scholar 

  28. Hutsemékers, D., Manfroid, J., Jehin, E., Opitom, C., and Moulane, Y., Fe and Ni in cometary atmospheres. Connections between the Ni/Fe abundance ratio and chemical characteristics of Jupiter-family and Oort-cloud comets, 2021. arXiv:2107.05932.2021.

  29. Jewitt, D., The active centaurus, Astron. J., 2009, vol. 137, no. 5, pp. 4296–4312.

    Article  ADS  Google Scholar 

  30. Jewitt, D., Color systematics of comets and related bodies, Astron. J., 2015, vol. 150, pp. 201–209.

    Article  ADS  Google Scholar 

  31. Jewitt, D. and Luu, J., Initial characterization of interstellar comet 2I/2019 Q4 (Borisov), Astrophys. J. Lett., 2019, vol. 886, no. 2, p. L29.

    Article  ADS  Google Scholar 

  32. Jewitt, D., Hui, M.-T., Kim, Y., Mutchler, M., Weaver, H., and Agarwal, J., The nucleus of interstellar comet 2I/Borisov, Astrophys. J. Lett., 2020, vol. 888, no. 2, p. L23.

    Article  ADS  Google Scholar 

  33. Jorda, L., Crovisier, J., and Green, D.W.E., The correlation between visual magnitudes and water production rates, Proc. Conf. Asteroids, Comets, Meteors, Baltimore, Maryland, USA: LPI Contribution, 2008, no. 1405, p. 8046.

  34. Kareta, Th., Andrews, J., Noonan, J., Harris, W.M., Smith, N., O’Brien, P., Sharkey, B.N.L., Reddy, V., Springmann, A., and Lejoly, C., Carbon chain depletion of 2I/Borisov, Astrophys. J. Lett., 2020, vol. 889, no. 2, p. L38.

    Article  ADS  Google Scholar 

  35. Kochergin, A., Zubko, E., Husarik, M., Ivanova, O.V., Videen, G., Chornaya, E., Kim, S.S., Zheltobryukhov, M., and Luk’yanyk, I., Velocity of dust ejected from interstellar comet 2I/Borisov, Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 10, p. 152.

    ADS  Google Scholar 

  36. Lee, S., von Allmen, P., Allen, M., Beaudin, G., Biver, N., Bockelée-Morvan, D., Choukroun, M., Crovisier, J., Encrenaz, P., Frerking, M., et al., Spatial and diurnal variation of water outgassing on comet 67P/Churyumov–Gerasimenko observed from Rosetta/MIRO in August 2014, Astron. Astrophys., 2015, vol. 583, p. A5.

    Article  Google Scholar 

  37. Lee, C.-H., Lin, H.-W., Chen, Y.-T., and Yen, S.-F., FLAMINGOS-2 infrared photometry of 2I/Borisov, Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 12, p. 184.

    ADS  Google Scholar 

  38. Lepoutre, A., Survival of amorphous water ice on centaurs, Astron. J., 2012, vol. 144, no. 4, p. 97.

    Article  ADS  Google Scholar 

  39. Lin, H.W., Lee, C.-H., Gerdes, D.W., Adams, F.C., Becker, J., Napier, K., and Markwardt, L., Detection of diatomic carbon in 2I/Borisov, Astrophys. J. Lett., 2020, vol. 889, no. 2, p. L30.

    Article  ADS  Google Scholar 

  40. Lodders, K., Solar system abundances of the elements, Principles and Perspectives in Cosmochemistry, Goswami, A. and Reddy, B.E., Eds., Astrophys. and Space Sci. Proc., Berlin-Heidelberg: Springer Verlag, 2010, pp. 379–417.

  41. Lodders, K. and Fegley, B., Jr., Planetary Scientist’s Companion, New York: Oxford Univ. Press, 1998.

    Google Scholar 

  42. Mandt, K.E., Mousis, O., Marty, B., Cavalie, T., Harris, W., Hartogh, P., and Willacy, K., Constraints from comets on the formation and volatile acquisition of the planets and satellites, Space Sci. Rev., 2015, vol. 197, pp. 297–342.

    Article  ADS  Google Scholar 

  43. Manfroid, J., Hutsemékers, D., and Jehin, E., Iron and nickel atoms in cometary atmospheres even far from the Sun, Nature, 2021, vol. 593, pp. 372–374.

    Article  ADS  Google Scholar 

  44. Marboeuf, U. and Schmitt, B., How to link the relative abundances of gas species in coma of comets to their initial chemical composition?, Icarus, 2014, vol. 242, pp. 225–248.

    Article  ADS  Google Scholar 

  45. Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N., and Benz, W., From stellar nebula to planetesimals, Astron. Astrophys., 2014, vol. 570, p. A35.

    Article  ADS  Google Scholar 

  46. Martin, R.G. and Livio, M., On the evolution of the snow line in protoplanetary discs, Mon. Not. R. Astron. Soc., 2012, vol. 425, pp. L6–L9.

    Article  ADS  Google Scholar 

  47. McKay, A.J., Cochran, A.L., Dello Russo, N., and DiSanti, M.A., Detection of a water tracer in interstellar comet 2I/Borisov, Astrophys. J. Lett., 2020, vol. 889, no. 1, p. L10.

    Article  ADS  Google Scholar 

  48. Meech, K.J., Weryk, R., Micheli, M., Kleyna, J.T., Hainaut, O.R., Jedicke, R., Wainscoat, R.J., Chambers, K.C., Keane, J.V., Petric, A., et al., A brief visit from a red and extremely elongated interstellar asteroid, Nature, 2017, vol. 552, no. 7685, pp. 378–381.

    Article  ADS  Google Scholar 

  49. Mousis, O., Lunine, J.I., Luspay-Kuti, A., Guillot, T., Marty, B., Ali-Dib, M., Wurz, P., Altwegg, K., Bieler, A., Hassig, M., et al., Protosolar nebula origin for the ices agglomerated by comet 67P/Churyumov–Gerasimenko, Astrophys. J. Lett., 2016, vol. 819, no. 2, p. L33.

    Article  ADS  Google Scholar 

  50. Opitom, C., Fitzsimmons, A., Jehin, E., Moulane, Y., Hainaut, O., Meech, K.J., Yang, B., Snodgrass, C., Micheli, M., Keane, J.V., Benkhaldoun, Z., and Kleyna, J.T., 2I/Borisov: A C2-depleted interstellar comet, Astron. Astrophys., 2020, vol. 631, p. L8.

    Article  ADS  Google Scholar 

  51. Opitom, C., Jehin, E., Hutsemékers, D., Shinnaka, Y., Manfroid, J., Rousselot, P., Raghuram, S., Kawakita, H., Fitzsimmons, A., Meech, K., et al., The similarity of the interstellar comet 2I/Borisov to Solar System comets from high resolution optical spectroscopy, Astron. Astrophys., 2021, vol. 650, p. L19.

    Article  ADS  Google Scholar 

  52. Podolak, M. and Zucker, S., A note on the snow line in protostellar accretion disks, Meteoritics Planet. Sci., 2004, vol. 39, no. 11, pp. 1859–1868.

    Article  ADS  Google Scholar 

  53. Rusol, A.V. and Dorofeeva, V.A., Thermal evolution of the nucleus of the comet 67P for 120 years: Numerical simulations, Open Astron., 2018, vol. 27, no. 1, pp. 175–182.

    Article  ADS  Google Scholar 

  54. Xing, Z., Bodewits, D., Noonan, J., and Bannister, M.T., Water production rates and activity of interstellar comet 2I/Borisov, Astrophys. J. Lett., 2020, vol. 893, no. 2, p. L48.

    Article  ADS  Google Scholar 

  55. Yamamoto, T., Formation environment of cometary nuclei in the primordial solar nebula, Astron. Astrophys., 1985, vol. 142, no. 1, pp. 31–36.

    ADS  MathSciNet  Google Scholar 

  56. Yang, B., Li, A., Cordiner, M.A., Chang, C.-S., Hainaut, O.R., Williams, J.P., Meech, K.J., Keane, J.V., and Villard, E., Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov, Nat. Astron., 2021, vol. 5, pp. 586–593.

    Article  ADS  Google Scholar 

  57. Ye, Q., Kelley, M.S.P., Bolin, B.T., Bodewits, D., Farnocchia, D., Masci, F.J., Meech, K.J., Micheli, M., Weryk, R., Bellm, E.C., et al., Pre-discovery activity of new interstellar comet 2I/Borisov beyond 5 AU, Astron. J., 2020, vol. 159, no. 2, p. 77.

    Article  ADS  Google Scholar 

  58. Zubko, E., Chornaya, E., Videen, G., and Kim, S.S., Clues to understanding the microphysics of dust in the interstellar comet C/2019 Q4 (Borisov), Res. Notes Am. Astron. Soc., 2019, vol. 3, no. 9, p. 138.

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.I. Korableva and A.V. Zakharov for the attention shown to our work and comments that contributed to its significant improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dorofeeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, V.A., Borisov, G.V. & Shustov, B.M. Comet 2I/Borisov in Comparison with Comets of the Solar System. Sol Syst Res 57, 76–84 (2023). https://doi.org/10.1134/S0038094623010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623010021

Keywords:

Navigation