Skip to main content
Log in

Analysis of Thermal Protection Using an Anisotropic Material During the Return Capsule Descent

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The article treats the descent of a stabilized spherical capsule to the Earth’s surface along the trajectory from near-lunar and low-Earth orbits. Approximate dependences approximating the known results of numerical and experimental studies are used to analyze the thermal protection environment of the capsule. The use of a material with a high degree of anisotropy of thermal conductivity in the composition of a heat-protective coating is considered. The results indicate that the capsule descent can be performed with no damage to its heat shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Allen, H.J. and Eggers, A.J., Jr., A study of the motion and aerodynamic heating of ballistic missiles entering the Earth’s atmosphere at high supersonic speeds, NACA Technical Report 1381, Washington, DC: Natl. Aeronaut. Space Admin., 1958.

  2. Chapman, G.T., Theoretical laminar convective heat transfer and boundary layer characteristics on cones at speeds to 24 km/s, NASA Technical Note D-2463, Washington, DC: Natl. Aeronaut. Space Admin., 1964.

    Google Scholar 

  3. Efanov, V.V., Martynov, M.B., and Karchaev, Kh.Zh., Aerial vehicles developed at Lavochkin Research and Production Association (On the 80th anniversary of the Lavochkin Association), Sol. Syst. Res., 2018, vol. 52, no. 7, pp. 557–569.

    Article  ADS  Google Scholar 

  4. Finchenko, V.S., Kotlyarov, E.Yu., and Ivankov, A.A., Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsii (Systems for Providing Thermal Regimes for Automatic Interplanetary Stations), Efanov, V.V. and Finchenko, V.S., Eds., Khimki: NPO im. S.A. Lavochkina, 2018.

  5. Finchenko, V.S., Ivankov, A.V., Golomazov, M.M., and Shmatov, S.I., On the use of inflatable decelerators in the design of spacecraft intended for the study of Venus, Sol. Syst. Res., 2020, vol. 54, no. 7, pp. 595–602.

    Article  ADS  Google Scholar 

  6. Galanin, M.P. and Savenkov, E.B., Metody chislennogo analiza matematicheskikh modelei (Methods for Numerical Analysis of Mathematical Models), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2018.

    Google Scholar 

  7. Golomazov, M.M. and Ivankov, A.A., Software package for the development of thermal protection systems for spacecraft descent into the atmospheres of planets, Sol. Syst. Res., 2018, vol. 52, no. 7, pp. 578–589.

    Article  ADS  Google Scholar 

  8. Gordienko, E.S., Khudorozhkov, P.A., Simonov, A.V., Optimization of the return trajectories from the moon for delivering soil to a specified region on the Earth’s surface, Sol. Syst. Res., 2020, vol. 54, no. 7, pp. 654–661.

    Article  ADS  Google Scholar 

  9. Gorskii, V.V. and Pugach, M.A., Comparison of calculated and experimental data on laminar-turbulent heat transfer on the hemisphere surface streamlined by a supersonic air flow, High Temp., 2015, vol. 53, no. 2, pp. 223–227.

    Article  Google Scholar 

  10. GOST (State Standard) 4401-81: Standard Atmosphere. Parameters, 2004.

  11. GOST (State Standard) R 25645.166-2004: Earth’s Upper Atmosphere. Density Model for Ballistic Support of Flights of Artificial Earth Satellites, 2004.

  12. Johnson, J.E., Starkey, R.P., and Lewis, M.J., Aerothermodynamic optimization of reentry heat shield shapes for a crew exploration vehicle, J. Spacecr. Rockets, 2007, vol. 44, no. 4, pp. 849–859.

    Article  ADS  Google Scholar 

  13. Johnston, C.O., Hollis, B.R., and Sutton, K., Nonequilibrium stagnation-line radiative heating for Fire-II, J. Spacecr. Rockets, 2008, vol. 45, pp. 1185–1195.

    Article  ADS  Google Scholar 

  14. Khartov, V.V., Zelenyi, L.M., Dolgopolov, V.P., Efanov, V.V., et al., New Russian lunar unmanned space complexes, Sol. Syst. Res., 2011, vol. 45, no. 7, pp. 690–696.

    Article  ADS  Google Scholar 

  15. Konvektivnyi teploobmen letatel’nykh apparatov (Convective Heat Transfer of Aerial Vehicles), Zemlyanskii, B.A., Ed., Moscow: Fizmatlit, 2014.

    Google Scholar 

  16. Kosenkova, A.V., Sedykh, O.Yu., Simonov, A.V., and Minenko, V.E., Study of accessible landing regions on the surface of Venus for spacecraft of various types, Vestn. NPO im. S.A. Lavochkina, 2021, no. 1, pp. 12–20.

  17. Leonov, V.V., Grishko, D.A., Airapetyan, M.A., Shvyrkina, O.S., et al., Thermal analysis of trajectories of return from the Moon using several entries into the atmosphere for ballistic capsule and gliding descent vehicles, Cosmic Res., 2021a, vol. 59, no. 3, pp. 162–174. https://doi.org/10.1134/S0010952521030060

    Article  ADS  Google Scholar 

  18. Leonov, V.V., Zarubin, V.S., Jr., and Airapetyan, M.A., Analysis of the effectiveness of anisotropic heat-protective material in the implementation of trajectories with multiple re-entries into the atmosphere, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2021b, no. 2, pp. 56–68. https://doi.org/10.18698/0536-1044-2021-2-56-68

  19. Martin, J., Atmospheric Reentry: An Introduction to Its Science and Engineering, Englewood Cliffs, NJ: Prentice-Hall, 1966.

    Google Scholar 

  20. Nikitin, P.V., Teplovaya zashchita (Heat Protection), Moscow: Izd. Mosk. Aviats. Inst., 2006.

    Google Scholar 

  21. Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., Comparison of coupled radiative Navier–Stokes flow solutions with the Project Fire II flight data, 6th Joint Thermophysics and Heat Transfer Conf., Colorado Springs, CO, 1994, paper AIAA 94-1955.

  22. Osnovy teploperedachi v aviatsionnoi i raketnokosmicheskoi tekhnike (Fundamentals of Heat Transfer in Aviation and Rocket and Space Technology), Avduevskii, V.S. and Koshkin, V.K., Eds., Moscow: Mashinostroenie, 1992.

    Google Scholar 

  23. Reviznikov, D.L. and Sukharev, T.Yu., Hypersonic flow-around of blunted bodies in conditions of earth and mars atmosphere. Comparative analysis of mathematical models, Tepl. Protsessy Tekh., 2018, vol. 10, nos. 1–2, pp. 5–15.

  24. Shevelev, Yu.D. and Syzranova, N.G., The influence of chemical reactions on heat transfer in the boundary layer, Fiz.-Khim. Kinet. Gazov. Din., 2010, vol. 10, no. 2, pp. 91–126.

    Google Scholar 

  25. Siegel, R. and Howell, J.R., Thermal radiation heat transfer, New York: Taylor and Francis, 2002.

    Google Scholar 

  26. Sosedov, V.P., Svoistva konstruktsionnykh materialov na osnove ugleroda: spravochnik (Properties of Carbon-Based Structural Materials: A Handbook), Moscow: Metallurgiya, 1975.

    Google Scholar 

  27. Surzhikov, S.T. and Shuvalov, M.P., Analysis of radiative-convective heating of four types of descent spacecraft, Fiz.-Khim. Kinet. Gazov. Din., 2014, vol. 15, no. 4, pp. 1–18.

    Google Scholar 

  28. Sutton, K. and Graves, R.A., A general stagnation point convective heating equation for arbitrary gas mixtures, NASA Technical Report R-376, Washington, DC: Natl. Aeronaut. Space Admin., 1971.

  29. Tauber, M.E., Some simple scaling relations for heating of ballistic entry bodies, J. Spacecr. Rockets, 1970, vol. 7, no. 7, pp. 885–886.

    Article  ADS  Google Scholar 

  30. Teoriya teplomassoobmena (Theory of Heat and Mass Transfer), Leont’ev, A.I., Ed., Moscow: Izd. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2018.

  31. Torres Sanchez, C.G. and Vorontsov, V.A., Design parameters evaluation of small reentry vehicle with account for initial data uncertainty, Tr. Mosk. Aviats. Inst., 2018, no. 101, p. 29.

  32. Vaganov, A.V., Dmitriev, V.G., Zadonskii, S.M., Kireev, A.Yu., et al., Estimates of the thermal regime of a small-sized winged reentry vehicle at the stage of its design, Fiz.-Khim. Kinet. Gazov. Din., 2006, vol. 4, pp. 443–463.

    Google Scholar 

  33. Walker, S.P., Daryabeigi, K., Samareh, J.A., Armand, S.C., and Perino, S.V., Preliminary development of a multifunctional hot structure heat shield, 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., National Harbor, MD, 2014, paper AIAA 2014-0350. https://doi.org/10.2514/6.2014-0350

  34. Zarubin, V.S., Zimin, V.N., and Kuvyrkin, G.N., Temperature state and assessment of the deviation of the shape of the spherical shell of the calibration spacecraft in the shadow section of the near-Earth orbit, Kosm. Appar. Tekhnol., 2018, no. 3 (25), pp. 147–156. https://doi.org/10.26732/2618-7957-2018-3-147-156

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Science and Higher Education of Russia (project no. 0705-2020-0047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Zarubin, V. N. Zimin, V. V. Leonov or V. S. Zarubin  (Jr.).

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Zimin, V.N., Leonov, V.V. et al. Analysis of Thermal Protection Using an Anisotropic Material During the Return Capsule Descent. Sol Syst Res 56, 527–536 (2022). https://doi.org/10.1134/S0038094622070164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622070164

Keywords:

Navigation