Skip to main content

The Young Volcanic Rises on Venus: a Key Scientific Target for Future Orbital and in-situ Measurements on Venus

Abstract

A number of new Venus mission concepts are being currently evaluated for final approval, such as the NASA VERITAS and DAVINCI+, the Roscosmos-NASA Venera-D and the ESA EnVision proposals. These missions would analyze different aspects of the Earth’s twin planet: the chemistry and structure of its atmosphere, the spectral characteristics and composition of its surface, and its gravity anomalies. The wealth of high-resolution data to be produced by these future missions would likely shed new light on the major science questions. In this regard, one of the major debates concerns whether Venus underwent (and it is currently undergoing) through several episodes of abrupt and catastrophic resurfacing which rejuvenated its entire surface in a short amount of time, or its volcanism has been more steady and constant in time. Recent studies of Imdr Regio, one of the young volcanic rises, have provided hints indicating that volcanic as well as tectonic activity may be still ongoing in that area. The young volcanic rises are generated and supported by underlying active mantle plumes and can be considered as the some of the youngest geologic terrains of Venus. Studying how the rate and styles of volcanic and tectonic activities are evolving through time will tell us more about the interior structure of Venus, shedding some light on the major debate between catastrophic and equilibrium resurfacings. For this reason, we propose here the young volcanic rises, and in particular Idunn Mons of Imdr Regio, as potential target sites for future orbital and in-situ investigations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Basilevsky, A.T., On the stratigraphic significance of wrinkle ridges on Venus, Lunar Planet. Sci., 1996, vol. 27, p. 67.

    ADS  Google Scholar 

  2. Berger, G., Cathala, A., Fabre, S., Borisova, A.Y., Pages, A., Aigouy, T., Esvan, J., and Pinet, P., Experimental exploration of volcanic rocks-atmosphere interaction under Venus surface conditions, Icarus, 2019, vol. 329, pp. 8–23. https://doi.org/10.1016/j.icarus.2019.03.033

    ADS  Article  Google Scholar 

  3. Bertaux, J.L., Khatuntsev, I. V., Hauchecorne, A., Markiewicz, W.J., Marcq, E., Lebonnois, S., Patsaeva, M., Turin, A., and Fedorova, A., Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res. Planets, 2016, vol. 121, no. 6, pp. 1087–1101. https://doi.org/10.1002/2015JE004958

    ADS  Article  Google Scholar 

  4. Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J., and Swayze G.A., Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite, Am. Mineral., 2014, vol. 99, no. 10, pp. 2105–2115.

    ADS  Article  Google Scholar 

  5. Bjonnes, E.E., Hansen, V.L., James, B., and Swenson, J.B., Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories, Icarus, 2012, vol. 217, no. 2, pp. 451–461. https://doi.org/10.1016/j.icarus.2011.03.033

    ADS  Article  Google Scholar 

  6. Brian, A.G., Stofan, E.R., Guest, J.E and Smrekar, S.E., Laufey Regio: A newly discovered topographic rise on Venus, J. Geophys. Res. Planets, 2004, vol. 109, art. id. E07002, https://doi.org/10.1029/2002JE002010

  7. Brossier, J., Gilmore, M., and Toner, K., Low radar emissivity signatures on Venus volcanoes and coronae: New insights on relative composition and age, Icarus, vol. 343, art. id. 113693.

  8. Bruzzone, L., et al., Envision mission to Venus: subsurface radar sounding, in IGARSS 2020—IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, 2020, pp. 5960–5963. https://doi.org/10.1109/IGARSS39084.2020.9324279

  9. Cutler, K.S., Filiberto, J., Treiman, A.H., and Trang, D., Experimental investigation of oxidation of pyroxene and basalt: implications for spectroscopic analyses of the surface of Venus and the ages of lava flows, Planet. Sci. J., 2020, vol. 1, no. 1. https://doi.org/10.3847/psj/ab8faf

  10. D’Incecco, P., López, I., Komatsu, G., Ori, G.G., and Aittola, M., Local stratigraphic relations at Sandel crater, Venus: Possible evidence for recent volcano-tectonic activity in Imdr Regio, Earth Planet. Sci. Lett., 2020, vol. 546, art. id. 116410. https://doi.org/10.1016/j.epsl.2020.116410

  11. D’Incecco, P., Müller, N., Helbert, J., and D’Amore, M., Idunn Mons on Venus: Location and extent of recently active lava flows, Planet. Space Sci., 2017, vol. 136, pp. 25–33. https://doi.org/10.1016/j.pss.2016.12.002

    ADS  Article  Google Scholar 

  12. Dyar, M.D., Helbert, J., Cooper, R.F., Sklute, E.C., Maturilli, A., Mueller, N.T., Kappel, D., and Smrekar, S.E., Surface weathering on Venus: Constraints from kinetic, spectroscopic, and geochemical data, Icarus, 2020, vol. 358, art. id. 114139.

  13. Fegley, B., Klingelhöfer, G., Brackett, R., Izenberg, N., Kremser, D., and Lodders, K., Basalt oxidation and the formation of hematite on the surface of Venus, Icarus, 1995, vol. 118, pp. 373–383.

    ADS  Article  Google Scholar 

  14. Filiberto, J., Magmatic diversity on Venus: Constraints from terrestrial analog crystallization experiments, Icarus, 2014, vol. 231, pp. 131–136. https://doi.org/10.1016/j.icarus.2013.12.003

    ADS  Article  Google Scholar 

  15. Filiberto, J., Trang, D., Treiman, A.H., and Gilmore, M.S., Present-day volcanism on Venus as evidenced from weathering rates of olivine, Sci. Adv., 2020, vol. 6, no. 1, art. id. eaax7445. https://doi.org/10.1126/sciadv.aax7445

  16. Ford, P.G. and Pettengill, G.H., Venus: Global surface radio emissivity, Science, 1983, vol. 220, no. 4604, pp. 1379–1381. https://doi.org/10.1126/science.220.4604.1379

    ADS  Article  Google Scholar 

  17. Fukuhara, T., Futaguchi, M., Hashimoto, G.L., Horinouchi, T., Imamura, T., Iwagaimi, N., Kouyama, T., Murakami, S.Y., Nakamura, M., Ogohara, K., Sato, M., Sato, T.M., Suzuki, M., Taguchi, M., Takagi, S., Ueno, M., Watanabe, S., Yamada, M., and Yamazaki, A., Large stationary gravity wave in the atmosphere of Venus, Nat. Geosci., 2017, vol. 10, pp. 85–88. https://doi.org/10.1038/ngeo2873

    ADS  Article  Google Scholar 

  18. Garvin, J., Arney, G., Getty, S., Johnson, N., Kiefer, W., Lorenz, R., Ravine, M., Malespin, C., Webster, C., and Campbell, B., DAVINCI+: Deep Atmosphere of Venus Investigation of Noble Gases, Chemistry, and Imaging Plus, 51st Lunar and Planetary Science Conference, 2020, abs. no. 2326.

  19. Ghail, R. Wilson, C., Widemann, T., Titov, D., Ansan, V., Bovolo, F., Breuer, D., Bruzzone, L., Campbell, B., Dumoulin, C., Helbert, J., Hensley, S., Kiefer, W., Komatsu, G., Le Gall, A., Marcq, E., Mason, P., Robert, S., Rosenblatt, P., and Vandaele, A.C., The science goals of the EnVision Venus orbiter mission, 14th Europlanet Science Congress, 2020, art. id. EPSC2020-599.

  20. Ghail, R.C., Hall, D., Mason, P.J., Herrick, R.R., Carter, L.M., and Williams, E., VenSAR on EnVision: Taking earth observation radar to Venus, Int. J. Appl. Earth Obs. Geoinf., 2018, vol. 64, pp. 365–376. https://doi.org/10.1016/j.jag.2017.02.008

    ADS  Article  Google Scholar 

  21. Ghail, R., Rheological and petrological implications for a stagnant lid regime on Venus, Planet. Space Sci., 2015, vols. 113–114, pp. 2–9. https://doi.org/10.1016/j.pss.2015.02.005

    ADS  Article  Google Scholar 

  22. Ghail, R.C. and Wilson, L., A pyroclastic flow deposit on Venus, Geol. Soc. Spec. Publ., 2015, vol. 401, no. 1, p. 97. https://doi.org/10.1144/SP401.1

    ADS  Article  Google Scholar 

  23. Ghail, R.C., Wilson, C., Galand, M., Hall, D., Cochrane, C., Mason, P., Helbert, J., MontMessin, F., Limaye, S., Patel, M., Bowles, N., Stam, D., Wahlund, J.E., Rocca, F., Waltham, D., Mather, T.A., Biggs, J., Genge, M., Paillou, P., Mitchell, K., Wilson, L., and Singh, U.N., EnVision: Taking the pulse of our twin planet, Exp. Astron., 2012, vol. 33, pp. 337–363. https://doi.org/10.1007/s10686-011-9244-3

    ADS  Article  Google Scholar 

  24. Glaze, L.S., Garvin, J.B., Robertson, B., Johnson, N.M., Amato, M.J., Thompson, J., Goodloe, C., and Everett, D., DAVINCI: Deep atmosphere Venus investigation of noble gases, chemistry, and imaging, in IEEE Aerospace Conference Proceedings, 2017, art. id. 1694660. https://doi.org/10.1109/AERO.2017.7943923

  25. Glaze, L.S., Wilson, C.F., Zasova, L.V., Nakamura, M., and Limaye, S., Future of Venus research and exploration, Space Sci. Rev., 2018, vol. 214, art. id. 89.

  26. Gorinov, D.A., Zasova, L.V., Khatuntsev, I.V., Patsaeva, M.V., and Turin, A.V., Winds in the lower cloud level on the nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm images, Atmosphere, 2021, vol. 12, no. 2, p. 126. https://doi.org/10.3390/atmos12020186

    Article  Google Scholar 

  27. Guest, J.E and Stofan, E.R., A new view of the stratigraphic history of Venus, Icarus, 1999, vol. 139, pp. 55–66.

    ADS  Article  Google Scholar 

  28. Helbert, J., Vandaele, A.C., Marcq, E., Robert, S., Ryan, C., Guignan, G., Rosas-Ortiz, Y.M., Neefs, E., Thomas, I.R., Arnold, G., Peter, G., Widemann, T., and Lara, L.M., The VenSpec suite on the ESA EnVision mission to Venus, Proc. SPIE 11128, Infrared Remote Sensing and Instrumentation XXVII, 2019, art. id. 1112804. https://doi.org/10.1117/12.2529248

  29. Helbert, J., Dyar, M.D., Widemann, T., Marcq, E., Walter, I., Guignan, G., Wendler, D., Mueller, N., Kappel, D., Arnold, G.E., D’Amore, M., Maturilli, A., Ferrari, S., Tsang, C., Börner, A., Jaenchen, J., and Smrekar, S.E., The Venus Emissivity Mapper (VEM): obtaining global mineralogy of Venus from orbit, Proc. SPIE 10765, Infrared Remote Sensing and Instrumentation XXVI, 2018, art. id. 107650D. https://doi.org/10.1117/12.2320112

  30. Hensley, S., Smrekar, S., Nunes, D., Mueller, N., Helbert, J., Mazarico, E., and Team, V.S., VERITAS: Towards the next generation of cartography for the planet Venus, 47th Lunar Planet. Sci. Conf., 2016.

  31. Hensley, S., Smrekar, S., Shaffer, S., Paller, M., Figueroa, H., Freeman, A., Hodges, R., and Walkemeyer, P., VISAR: A next generation interferometric radar for venus exploration, in Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, 2015, art. id. 15568718. https://doi.org/10.1109/APSAR.2015.7306225

  32. Kargel, J.S., Komatsu, G., Baker, V.R., and Strom, R.G., The volcanology of Venera and VEGA landing sites and the geochemistry of Venus, Icarus, 1993, vol. 103, no. 2, pp. 253–275. https://doi.org/10.1006/icar.1993.1069

    ADS  Article  Google Scholar 

  33. Karimi, S. and Dombard, A.J., Studying lower crustal flow beneath Mead basin: Implications for the thermal history and rheology of Venus, Icarus, 2017, vol. 282, pp. 34–39. https://doi.org/10.1016/j.icarus.2016.09.015

    ADS  Article  Google Scholar 

  34. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., Ignatiev, N.I., Turin, A.V., Fedorova, A.A., and Markiewicz, W.J., Winds in the middle cloud deck from the near-IR imaging by the Venus monitoring camera onboard Venus Express, J. Geophys. Res. Planets, 2017, vol. 122, no. 11, pp. 2312–2327. https://doi.org/10.1002/2017JE005355

    ADS  Article  Google Scholar 

  35. Knafelc, J., Filiberto, J., Ferré, E.C., Conder, J.A., Costello, L., Crandall, J.R., Dyar, M.D., Friedman, S.A., Hummer, D.R., and Schwenzer, S.P., The effect of oxidation on the mineralogy and magnetic properties of olivine, Am. Mineral., 2019, vol. 104, no. 5, pp. 694–702. https://doi.org/10.2138/am-2019-6829

    ADS  Article  Google Scholar 

  36. López, I., D’Incecco, P., Komatsu, G., and Filiberto, J., Origin of flat-topped Venusian shield volcano summits: A case study on Idunn Mons, 52th Lunar Planet. Sci. Conf., Houston, TX, 2021, art. id. 1329.

  37. Masursky, H., Eliason, E., Ford, P.G., McGill, G.E., Pettengill, G.H., Schaber, G.G., and Schubert, G., Pioneer Venus Radar results: Geology from images and altimetry, J. Geophys. Res., 1980, vol. 85, no. A13, pp. 8232–8260. https://doi.org/10.1029/ja085ia13p08232

    ADS  Article  Google Scholar 

  38. Mazarico, E., et al., Exploring the interior of Venus with the VERITAS gravity science investigation, AGU Fall Meeting, 2019. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/548346.

  39. Nimmo, F. and McKenzie, D., Volcanism and tectonics on Venus, Annu. Rev. Earth Planet. Sci., 1998, vol. 26, pp. 23–51. https://doi.org/10.1146/annurev.earth.26.1.23

    ADS  Article  Google Scholar 

  40. O’Rourke, J.G. and Korenaga, J., Thermal evolution of Venus with argon degassing, Icarus, 2015, vol. 260, pp. 128–140. https://doi.org/10.1016/j.icarus.2015.07.009

    ADS  Article  Google Scholar 

  41. Phillips, R.J. and Hansen, V.L., Tectonic and magmatic evolution of Venus, Annu. Rev. Earth Planet. Sci., 1994, vol. 22, pp. 597–654. https://doi.org/10.1146/annurev.earth.22.1.597

    ADS  Article  Google Scholar 

  42. Phillips, R.J., Raubertas, R.F., Arvidson, R.E., Sarkar, I.C., Herrick, R.R., Izenberg, N., and Grimm, R.E., Impact craters and Venus resurfacing history, J. Geophys. Res., 1992, vol. 97, no. E10, pp. 15923–15948. https://doi.org/10.1029/92JE01696

    ADS  Article  Google Scholar 

  43. Reid, R.B., McCanta, M.C., Filiberto, J., Treiman, A.H., Keller, L., and Rutherford, M., Assessment of the effect of bulk composition on basalt weathering on Venus’ surface, 52nd Lunar and Planetary Conference, 2021, abs. no. 1293.

  44. Romeo, I. and Turcotte, D.L., Resurfacing on Venus, Planet. Space Sci., 2010, vol. 58, no. 10, pp. 1374–1380. https://doi.org/10.1016/j.pss.2010.05.022

    ADS  Article  Google Scholar 

  45. Saunders, R.S. and Malin, M.C., Geologic interpretation of new observations of the surface of Venus, Geophys. Res. Lett., 1977, vol. 4, no. 11, pp. 547–550. https://doi.org/10.1029/GL004i011p00547

    ADS  Article  Google Scholar 

  46. Schaber, G.G., Geology and distribution of impact craters on Venus: what are they telling us?, J. Geophys. Res., 1992, vol. 97, no. E8, pp. 13257–13301. https://doi.org/10.1029/92je01246

    ADS  Article  Google Scholar 

  47. Senske, D.A., Zasova, L. V., Ignatiev, N.I., Korablev, O., Eismont, N., Gerasimov, M., Ivanov, M.A., Martynov, M., Khatuntsev, I. V., Limaye, S.S., Jessup, K.L., Economou, T., and Esposito, L.W., Venera-D: Expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus, Report of the Venera-D Joint Science Definition Team, 2017.

  48. Smrekar, S.E., Elkins-Tanton, L., Leitner, J.J., Lenardic, A., Mackwell, S., Moresi, L., Sotin, C., and Stofan, E.R., Tectonic and thermal evolution of Venus and the role of volatiles: implications for understanding the terrestrial planets, in Exploring Venus as a Terrestrial Planet, Esposito, L.W., Stofan, E.R. and Cravens, T.E., Eds., American Geophysical Union Geophysical Monograph 176, Hoboken, NJ: Wiley, 2007, pp. 45–71.

    Google Scholar 

  49. Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., and Drossart, P., Recent hotspot volcanism on Venus from VIRTIS emissivity data, Science, 2010, vol. 328, no. 5978, pp. 605–608. https://doi.org/10.1126/science.1186785

    ADS  Article  Google Scholar 

  50. Smrekar, S.E., Dyar, D., Helbert, J., Hensley, S., Nunes, D., and Whitten, J., VERITAS (Venus Emissivity, Radio Science, InSAR, Topography And Spectroscopy): A proposed discovery mission, 14th Europlanet Science Congress 2020, held virtually, September 21, 2020–October 9, 2020, id. EPSC2020-447. https://www.epsc2020.eu/.

  51. Stofan, E.R., Smrekar, S.E., Bindschadler, D.L., and Senske, D.A., Large topographic rises on Venus: implications for mantle upwelling, J. Geophys. Res., 1995, vol. 100, no. E11, pp. 23317–23327. https://doi.org/10.1029/95je01834

    ADS  Article  Google Scholar 

  52. Strom, R.G., Schaber, G.G., and Dawson, D.D., The global resurfacing of Venus, J. Geophys. Res., 1994, vol. 99, no. E5, pp. 10899–10926. https://doi.org/10.1029/94je00388

    ADS  Article  Google Scholar 

  53. Teffeteller, H., Filiberto, J., McCanta, M.C., Treiman, A.H., Keller, L., Cherniak, D., and Rutherford, M., Experimental study of the alteration of basalt on the surface of Venus, 52nd Lunar and Planetary Conference, 2021, abs. no. 1635.

  54. Treiman, A.H., Geochemistry of Venus’ surface: Current limitations as future opportunities, in Geophysical Monograph Series, Hoboken, NJ: Wiley, 2007. https://doi.org/10.1029/176GM03

    Book  Google Scholar 

  55. Turcotte, D.L., Morein, G., Roberts, D., and Malamud, B.D., Catastrophic resurfacing and episodic subduction on Venus, Icarus, 1999, vol. 139, no. 1, pp. 49–54. https://doi.org/10.1006/icar.1999.6084

    ADS  Article  Google Scholar 

  56. Zasova, L.V., Gorinov, D.A., Eismont, N.A., et al., Venera-D: A design of an automatic space station for Venus exploration, Sol. Syst. Res., 2019, vol. 53, pp. 506–510. https://doi.org/10.1134/S0038094619070244

    ADS  Article  Google Scholar 

  57. Zolotov, M.Y., Gas–solid interactions on Venus and other solar system bodies, in High Temperature Gas-Solid Reactions in Earth and Planetary Processes, Berlin: De Gruyter, 2018. https://doi.org/10.1515/rmg.2018.84.10

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

P. D’Incecco thanks the European Union for the financial support through the “Programma Operativo Nazionale” (PON) Attraction and International Mobility (AIM) grant AIM1892731. This is APSI contribution no. 14.

J. Filiberto thanks partial support from NASA SSW grant 80NSSC17K0766. This is LPI contribution no. 2594. LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration.

D.A. Gorinov thanks the program #АААА-А18-118052890092-7 of the Ministry of High Education and Science of Russian Federation for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D’Incecco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Incecco, P., Filiberto, J., López, I. et al. The Young Volcanic Rises on Venus: a Key Scientific Target for Future Orbital and in-situ Measurements on Venus. Sol Syst Res 55, 315–323 (2021). https://doi.org/10.1134/S0038094621040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094621040031

Keywords:

  • Venus
  • geology
  • spectroscopy
  • atmosphere
  • landing sites