Skip to main content
Log in

Rotational Dynamics of the Inner Satellites of Jupiter

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

The article considers the attitude stability of synchronous rotation and the most significant relativistic effects in the rotational dynamics of the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14). It is established that the plane synchronous rotation of all inner satellites of Jupiter for the most probable values of the parameters of their shapes is stable with respect to tilting the axis of rotation. For the first time, the most significant secular, periodic, and mixed terms of the geodetic rotation of the inner satellites of Jupiter in the Euler angles relative to their own coordinate systems and in the angles of their rotation with respect to the fixed equator of the Earth and the vernal equinox (for the J2000.0 epoch) are determined. It is shown that there are objects in the Solar System with significant geodetic rotation caused primarily by their proximity to the perturbing central body rather than its mass. In particular, the value of the geodetic precession of the inner satellites of Jupiter (for which Jupiter is a less massive perturbing central body than the Sun) is 105 times greater than that of Jupiter rotating around its more massive central body (the Sun) and comparable with their precession in Newton approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abalakin, V.K., Osnovy efemeridnoi astronomii (Fundamentals of Ephemeris Astronomy), Moscow: Nauka, 1979.

  2. Archinal, B.A., Acton, C.H., A’Hearn, M.F., et al., Report of the IAU Working Group on cartographic coordinates and rotational elements: 2015, Celest. Mech. Dyn. Astron., 2018, vol. 130, no. 22, pp. 1–46.

    Article  MathSciNet  Google Scholar 

  3. Barnard, E.E., Discovery and observations of a fifth satellite to Jupiter, Astron. J., 1892, vol. 12, no. 275, pp. 81–85.

    Article  ADS  Google Scholar 

  4. Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Movement of an Artificial Satellite Relative to the Center of Mass), Moscow: Nauka, 1965.

  5. Biscani, F. and Carloni, S., A first-order secular theory for the post-Newtonian two-body problem with spin – II. A complete solution for the angular coordinates in the restricted case, Mon. Notic. R. Astron. Soc., 2015, vol. 446, pp. 3062–3077.

    Article  ADS  Google Scholar 

  6. Brumberg, V.A. and Bretagnon, P., Kinematical relativistic corrections for Earth’s rotation parameters, Proc. of IAU Colloquium 180, 2000, pp. 293–302.

  7. De Sitter, W., On Einstein’s theory of gravitation and its astronomical consequences, Mon. Notic. R. Astron. Soc., 1916, no. 77, pp. 155–184.

  8. Eroshkin, G.I. and Pashkevich, V.V., Geodetic rotation of the Solar system bodies, Artif. Satell., 2007, vol. 42, no. 1, pp. 59–70.

    Article  ADS  Google Scholar 

  9. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., and Kuchynka, P., The Planetary and Lunar Ephemerides DE430 and DE431, IPN Prog. Report 42–196, 2014, pp. 1–81.

  10. Fukushima, T., Geodesic nutation, Astron. Astrophys., 1991, vol. 244, no. 1, pp. L11–L12.

    ADS  Google Scholar 

  11. Giorgini, J.D., Chodas, P.W., and Yeomans, D.K., Orbit uncertainty and close-approach analysis capabilities of the Horizons On-Line Ephemeris System, 33rd AAS/DPS Meeting in New Orleans, Los Angeles, 2001.

  12. Goldreich, P. and Peale, S., Spin-orbit coupling in the Solar system, Astron. J., 1966, vol. 71, no. 6, pp. 425–438.

    Article  ADS  Google Scholar 

  13. Kopeikin, S., Efroimsky, M., and Kaplan, G., Relativistic Celestial Mechanics in the Solar System, Hoboken, NY: John Wiley and Sons, 2011.

    Book  Google Scholar 

  14. Kouprianov, V.V. and Shevchenko, I.I., On the chaotic rotation of planetary satellites: The Lyapunov exponents and the energy, Astron. Astrophys., 2003, vol. 410, pp. 749–757.

    Article  ADS  Google Scholar 

  15. Lichtenberg, A.J. and Lieberman, M.A., Regular and Stochastic Motion, Springer-Verlag New York, 1983.

    Book  Google Scholar 

  16. Ma, C., Arias, E.F., Eubanks, T.M., et al., The international celestial reference frame as realized by very long baseline interferometry, Astron. J., 1998, vol. 116, pp. 516–546.

    Article  ADS  Google Scholar 

  17. Melnikov, A., Pashkevich, V., Vershkov, A., and Karelin, G., Chaos and relativistic effects in the rotational dynamics of minor planetary satellites, Proc. Journées 2019 Astrometry, Earth Rotation and Reference Systems in the Gaia Era, Ed. by Bizouard, C. (Observatoire de Paris, Paris, France, 07–09 October 2019), pp. 339–344 (Pub Date September 2020, Bibcode: 2020jsrs.conf.339M.)

  18. Melnikov, A.V. and Shevchenko, I.I., On the rotational dynamics of Prometheus and Pandora, Celest. Mech. Dynam. Astron., 2008, vol. 101, nos. 1–2, pp. 31–47.

    Article  ADS  MathSciNet  Google Scholar 

  19. Melnikov, A.V. and Shevchenko, I.I., On the stability of the rotational motion of nonspherical natural satellites in a synchronous resonance, Sol. Syst. Res., 2000, vol. 34, no. 5, pp. 434–442.

    ADS  Google Scholar 

  20. Melnikov, A.V. and Shevchenko, I.I., Unusual rotation modes of minor planetary satellites, Sol. Syst. Res., 2007, vol. 41, no. 6, pp. 483–491. https://doi.org/10.1134/S0038094607060032

    Article  ADS  Google Scholar 

  21. Pashkevich, V.V. and Eroshkin, G.I., Relativistic rotation of the rigid body in the Rodrigues–Hamilton parameters: Lagrange function and equations of motion, Artif. Satell., 2018, vol. 53, no. 3.

  22. Pashkevich, V.V. and Vershkov, A.N., Consideration of relativistic effects in the rotation of Mars and its satellites, Sol. Syst. Res., 2019, vol. 53, no. 6, pp. 431–435. https://doi.org/10.1134/S0038094619060066

    Article  ADS  Google Scholar 

  23. Pashkevich, V.V. and Vershkov, A.N., New high-precision values of the geodetic rotation of the mars satellites system, major planets, Pluto, the Moon and the Sun, Artif. Satell., 2019, vol. 54, no. 2, pp. 31–42.

    Article  ADS  Google Scholar 

  24. Pashkevich, V.V., Geodesic (relativistic) rotation of bodies in the Solar system, Vestn. S.-Peterb. Gos. Univ., Ser. 1, 2016, vol. 3, no. 61, pp. 506–516.

    Google Scholar 

  25. Peale, S.J., Origin and evolution of the natural satellites, Annu. Rev. Astron. Astrophys., 1999, vol. 37, pp. 533–602.

    Article  ADS  Google Scholar 

  26. Peale, S.J., Rotation histories of the natural satellites, in Planetary Satellites, Burns, J.A., Eds., Tucson: Univ. Arizona Press, 1977, pp. 87–112.

    Google Scholar 

  27. Porco, C.C. and the Cassini Imaging Team, Cassini imaging of Jupiter’s atmosphere, satellites and rings, Science, 2003, vol. 299, pp. 1541–1547.

    Article  ADS  Google Scholar 

  28. Shevchenko, I.I., The separatrix algorithmic map: Application to the spin-orbit motion, Celest. Mech. Dyn. Astron., 1999, vol. 73, pp. 259–268.

    Article  ADS  MathSciNet  Google Scholar 

  29. Smith, B.A. and the Voyager Imaging Team, Jupiter system through the eyes of Voyager-1, Science, 1979a, vol. 204, pp. 951–972.

    Article  ADS  Google Scholar 

  30. Smith, B.A. and the Voyager Imaging Team, The Galilean satellites and Jupiter: Voyager-2 imaging results, Science, 1979b, vol. 206, pp. 927–950.

    Article  ADS  Google Scholar 

  31. Thomas, P.C., Burns, J.A., Rossier, L., Simonelli, D., et al., The small inner satellites of Jupiter, Icarus, 1998, vol. 135, pp. 360–371.

    Article  ADS  Google Scholar 

  32. Tiscareno, M.S., Thomas, P.C., and Burns, J.A., The rotation of Janus and Epimetheus, Icarus, 2009, vol. 204, pp. 254–261.

    Article  ADS  Google Scholar 

  33. Torzhevskii, A.P., Periodic solutions of the equation of plane oscillations of a satellite in an elliptical orbit, Kosmich. Issled., 1964, vol. 2, no. 5, pp. 667–678.

    Google Scholar 

  34. Wisdom, J., Rotation dynamics of irregularly shaped natural satellites, Astron. J., 1987, vol. 94, no. 5, pp. 1350–1360.

    Article  ADS  Google Scholar 

  35. Woolard, E.W., Theory of the Rotation of the Earth around Its Center of Mass, Univ. Calif. Libr., 1963.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pashkevich.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashkevich, V.V., Vershkov, A.N. & Mel’nikov, A.V. Rotational Dynamics of the Inner Satellites of Jupiter. Sol Syst Res 55, 47–60 (2021). https://doi.org/10.1134/S0038094620330035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620330035

Keywords:

Navigation