Abstract—
The article considers the attitude stability of synchronous rotation and the most significant relativistic effects in the rotational dynamics of the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14). It is established that the plane synchronous rotation of all inner satellites of Jupiter for the most probable values of the parameters of their shapes is stable with respect to tilting the axis of rotation. For the first time, the most significant secular, periodic, and mixed terms of the geodetic rotation of the inner satellites of Jupiter in the Euler angles relative to their own coordinate systems and in the angles of their rotation with respect to the fixed equator of the Earth and the vernal equinox (for the J2000.0 epoch) are determined. It is shown that there are objects in the Solar System with significant geodetic rotation caused primarily by their proximity to the perturbing central body rather than its mass. In particular, the value of the geodetic precession of the inner satellites of Jupiter (for which Jupiter is a less massive perturbing central body than the Sun) is 105 times greater than that of Jupiter rotating around its more massive central body (the Sun) and comparable with their precession in Newton approximation.
Similar content being viewed by others
REFERENCES
Abalakin, V.K., Osnovy efemeridnoi astronomii (Fundamentals of Ephemeris Astronomy), Moscow: Nauka, 1979.
Archinal, B.A., Acton, C.H., A’Hearn, M.F., et al., Report of the IAU Working Group on cartographic coordinates and rotational elements: 2015, Celest. Mech. Dyn. Astron., 2018, vol. 130, no. 22, pp. 1–46.
Barnard, E.E., Discovery and observations of a fifth satellite to Jupiter, Astron. J., 1892, vol. 12, no. 275, pp. 81–85.
Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Movement of an Artificial Satellite Relative to the Center of Mass), Moscow: Nauka, 1965.
Biscani, F. and Carloni, S., A first-order secular theory for the post-Newtonian two-body problem with spin – II. A complete solution for the angular coordinates in the restricted case, Mon. Notic. R. Astron. Soc., 2015, vol. 446, pp. 3062–3077.
Brumberg, V.A. and Bretagnon, P., Kinematical relativistic corrections for Earth’s rotation parameters, Proc. of IAU Colloquium 180, 2000, pp. 293–302.
De Sitter, W., On Einstein’s theory of gravitation and its astronomical consequences, Mon. Notic. R. Astron. Soc., 1916, no. 77, pp. 155–184.
Eroshkin, G.I. and Pashkevich, V.V., Geodetic rotation of the Solar system bodies, Artif. Satell., 2007, vol. 42, no. 1, pp. 59–70.
Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., and Kuchynka, P., The Planetary and Lunar Ephemerides DE430 and DE431, IPN Prog. Report 42–196, 2014, pp. 1–81.
Fukushima, T., Geodesic nutation, Astron. Astrophys., 1991, vol. 244, no. 1, pp. L11–L12.
Giorgini, J.D., Chodas, P.W., and Yeomans, D.K., Orbit uncertainty and close-approach analysis capabilities of the Horizons On-Line Ephemeris System, 33rd AAS/DPS Meeting in New Orleans, Los Angeles, 2001.
Goldreich, P. and Peale, S., Spin-orbit coupling in the Solar system, Astron. J., 1966, vol. 71, no. 6, pp. 425–438.
Kopeikin, S., Efroimsky, M., and Kaplan, G., Relativistic Celestial Mechanics in the Solar System, Hoboken, NY: John Wiley and Sons, 2011.
Kouprianov, V.V. and Shevchenko, I.I., On the chaotic rotation of planetary satellites: The Lyapunov exponents and the energy, Astron. Astrophys., 2003, vol. 410, pp. 749–757.
Lichtenberg, A.J. and Lieberman, M.A., Regular and Stochastic Motion, Springer-Verlag New York, 1983.
Ma, C., Arias, E.F., Eubanks, T.M., et al., The international celestial reference frame as realized by very long baseline interferometry, Astron. J., 1998, vol. 116, pp. 516–546.
Melnikov, A., Pashkevich, V., Vershkov, A., and Karelin, G., Chaos and relativistic effects in the rotational dynamics of minor planetary satellites, Proc. Journées 2019 Astrometry, Earth Rotation and Reference Systems in the Gaia Era, Ed. by Bizouard, C. (Observatoire de Paris, Paris, France, 07–09 October 2019), pp. 339–344 (Pub Date September 2020, Bibcode: 2020jsrs.conf.339M.)
Melnikov, A.V. and Shevchenko, I.I., On the rotational dynamics of Prometheus and Pandora, Celest. Mech. Dynam. Astron., 2008, vol. 101, nos. 1–2, pp. 31–47.
Melnikov, A.V. and Shevchenko, I.I., On the stability of the rotational motion of nonspherical natural satellites in a synchronous resonance, Sol. Syst. Res., 2000, vol. 34, no. 5, pp. 434–442.
Melnikov, A.V. and Shevchenko, I.I., Unusual rotation modes of minor planetary satellites, Sol. Syst. Res., 2007, vol. 41, no. 6, pp. 483–491. https://doi.org/10.1134/S0038094607060032
Pashkevich, V.V. and Eroshkin, G.I., Relativistic rotation of the rigid body in the Rodrigues–Hamilton parameters: Lagrange function and equations of motion, Artif. Satell., 2018, vol. 53, no. 3.
Pashkevich, V.V. and Vershkov, A.N., Consideration of relativistic effects in the rotation of Mars and its satellites, Sol. Syst. Res., 2019, vol. 53, no. 6, pp. 431–435. https://doi.org/10.1134/S0038094619060066
Pashkevich, V.V. and Vershkov, A.N., New high-precision values of the geodetic rotation of the mars satellites system, major planets, Pluto, the Moon and the Sun, Artif. Satell., 2019, vol. 54, no. 2, pp. 31–42.
Pashkevich, V.V., Geodesic (relativistic) rotation of bodies in the Solar system, Vestn. S.-Peterb. Gos. Univ., Ser. 1, 2016, vol. 3, no. 61, pp. 506–516.
Peale, S.J., Origin and evolution of the natural satellites, Annu. Rev. Astron. Astrophys., 1999, vol. 37, pp. 533–602.
Peale, S.J., Rotation histories of the natural satellites, in Planetary Satellites, Burns, J.A., Eds., Tucson: Univ. Arizona Press, 1977, pp. 87–112.
Porco, C.C. and the Cassini Imaging Team, Cassini imaging of Jupiter’s atmosphere, satellites and rings, Science, 2003, vol. 299, pp. 1541–1547.
Shevchenko, I.I., The separatrix algorithmic map: Application to the spin-orbit motion, Celest. Mech. Dyn. Astron., 1999, vol. 73, pp. 259–268.
Smith, B.A. and the Voyager Imaging Team, Jupiter system through the eyes of Voyager-1, Science, 1979a, vol. 204, pp. 951–972.
Smith, B.A. and the Voyager Imaging Team, The Galilean satellites and Jupiter: Voyager-2 imaging results, Science, 1979b, vol. 206, pp. 927–950.
Thomas, P.C., Burns, J.A., Rossier, L., Simonelli, D., et al., The small inner satellites of Jupiter, Icarus, 1998, vol. 135, pp. 360–371.
Tiscareno, M.S., Thomas, P.C., and Burns, J.A., The rotation of Janus and Epimetheus, Icarus, 2009, vol. 204, pp. 254–261.
Torzhevskii, A.P., Periodic solutions of the equation of plane oscillations of a satellite in an elliptical orbit, Kosmich. Issled., 1964, vol. 2, no. 5, pp. 667–678.
Wisdom, J., Rotation dynamics of irregularly shaped natural satellites, Astron. J., 1987, vol. 94, no. 5, pp. 1350–1360.
Woolard, E.W., Theory of the Rotation of the Earth around Its Center of Mass, Univ. Calif. Libr., 1963.
Funding
This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00811.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by O. Pismenov
Rights and permissions
About this article
Cite this article
Pashkevich, V.V., Vershkov, A.N. & Mel’nikov, A.V. Rotational Dynamics of the Inner Satellites of Jupiter. Sol Syst Res 55, 47–60 (2021). https://doi.org/10.1134/S0038094620330035
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0038094620330035