Abstract
Water ice is widespread in the Solar System. Computer simulation of light scattering by ice particles designed to interpret the observational data should take into account the spectral dependence of the refractive index of water ice. However, in practice, a single fixed value of the refractive index is often used. In this paper, we show that poor choice of a fixed refractive index commonly leads to significant errors in estimating both the intensity and the degree of polarization of single-scattered light. We have found that a fixed value of the refractive index of ice particles m0 = 1.3078 in the spectral region from 0.4 to 0.9 μm leads to minimal differences between the calculated characteristics of the light scattered by ice particles and those that take into account the spectral behavior of the refractive index. The most suitable values of the fixed refractive index for the widely used R, V, and I filters have been found. We have also studied the effect of the fixed refractive index of ice on the spectral dependence of the main parameters of the phase dependence of the linear polarization degree of single-scattered light, such as the magnitude and position of the minimum of the negative branch, the magnitude and position of the maximum of the positive branch, the inversion angle, and the polarimetric slope. The results of the calculations can be used to interpret the polarization of various objects of the Solar System that contain ice particles.
Similar content being viewed by others
REFERENCES
Anderson, J.D., Jacobson, R.A., McElrath, T.P., Moore, W.B., Schubert, G., and Thomas, P.C., Shape, mean radius, gravity field, and interior structure of Callisto, Icarus, 2001, vol. 153, p. 157.
Belskaya, I.N., Bagnulo, S., Barucci, M.A., Muinonen, K., Tozzi, G.P., Fornasier, S., and Kolokolova, L., Polarimetry of Centaurs (2060) Chiron, (5145) Pholus, and (10199) Chariklo, Icarus, 2010, vol. 210, no. 1, pp. 472–479.
Berger, E.L., Zega, T.J., Keller, L.P., and Lauretta, D.S., Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 12, pp. 3501–3513.
Capria, M.T., Coradini, A., and De Sanctis, M.C., C/1995 O1 Hale–Bopp: short and long distance activity from a theoretical model, Earth, Moon, Planets, 2002, vol. 90, pp. 217–225.
Dollfus, A., Étude des planètes par la polarisation de leur lumière, Suppl. Ann. Astrophys., 1957, vol. 4, pp. 3–114.
Dougherty, L.M. and Geake, J.E., Polarization by frost formed at very low temperatures, as relevant to icy planetary surfaces, Mon. Not. R. Astron. Soc., 1994, vol. 271, no. 2, pp. 343–354. https://doi.org/10.1093/mnras/271.2.343
Friedson, A.J. and Stevenson, D.J., Viscosity of ice-rock mixtures and applications to the evolution of icy satellites, Icarus, 1983, vol. 56, pp. 1–14.
Gulkis, S., Allen, M., Backus, C., Beaudin, G., Biver, N., Bockelee-Morvan, D., Crovisier, J., Despois, D., Encrenaz, P., Frerking, M., Hofstadter, M., Hartogh, P., Ip, W., Janssen, M., Kamp, L., et al., Remote sensing of a comet at millimeter and submillimeter wavelengths from an orbiting spacecraft, Planet. Space Sci., 2007, vol. 55, no. 9, pp. 1050–1057.
Hansen, J.E. and Travis, L.D., Light scattering in planetary atmospheres, Space Sci. Rev., 1974, vol. 16, pp. 527–610. https://doi.org/10.1007/BF00168069
Hussmann, H., Sohl, F., and Spohn, T., Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects, Icarus, 2006, vol. 185, no. 1, pp. 258–273.
Kelly, R. and Hall, D.K., Remote sensing of terrestrial snow and ice for global change studies, in Earth Observation of Global Change, Dordrecht: Springer-Verlag, 2008, pp. 189–219. https://doi.org/10.1007/978-1-4020-6358-9_9
Kiselev, N.N. and Petrov, D.V., On errors in constructing the polarization phase dependences for Solar System bodies, Sol. Syst. Res., 2018, vol. 52, no. 3, pp. 282–285. https://doi.org/10.1134/S0038094618030073
Kolokolova, L. and Kimura, H., Comet dust as a mixture of aggregates and solid particles: Model consistent with ground-based and space-mission results, Earth, Planets Space, 2010, vol. 62, no. 1, pp. 17–21.
Kossacki, K.J., Sublimation of cometary ices in the presence of organic volatiles II, Icarus, 2019, vol. 319, pp. 470–475.
Leroux, C., Lenoble, J., Brogniez, G., Hovenier, J.W., and De Haan, J.F., A model for the bidirectional polarized reflectance of snow, J. Quant. Spectrosc. Radiat. Transfer, 1999, vol. 61, no. 3, pp. 273–285.
Lv, Y. and Sun, Z., The reflectance and negative polarization of light scattered from snow surfaces with different grain size in backward direction, J. Quant. Spectrosc. Radiat. Transfer, 2014, vol. 133, pp. 472–481. https://doi.org/10.1016/j.jqsrt.2013.09.010
Lyot, B., Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres, PhD Thesis, Orléans: H. Tessier, 1929.
Mishchenko, M.I. and Travis, L.D., Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation, Appl. Opt., 1994, vol. 33, no. 30, pp. 7206–7225.
Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., T-matrix computations of light scattering by nonspherical particles: a review, J. Quant. Spectrosc. Radiat. Transfer, 1996, vol. 55, no. 5, pp. 535–575.
Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge Univ. Press, 2002.
Moore, W.B., Thermal equilibrium in Europa’s ice shell, Icarus, 2006, vol. 180, pp. 141–146.
Muinonen, K., Light scattering by Gaussian random particles, Earth, Moon, Planets, 1996a, vol. 72, pp. 339–342.
Muinonen, K., Light scattering by Gaussian random particles: Rayleigh and Rayleigh-Gans approximations, J. Quant. Spectrosc. Radiat. Transfer, 1996b, vol. 55, no. 5, pp. 603–613. https://doi.org/10.1016/0022-4073(96)00004-0
Muinonen, K., Introducing the Gaussian shape hypothesis for asteroids and comets, Astron. Astrophys., 1998, vol. 332, pp. 1087–1098.
Peltoniemi, J., Hakala, T., Suomalainen, J., and Puttonen, E., Polarised bidirectional reflectance factor measurements from soil, stones, and snow, J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, no. 17, pp. 1940–1953. https://doi.org/10.1016/j.jqsrt.2009.04.008
Petrov, D.V. and Kiselev, N.N., Positive branch of asteroid polarization: observational data and computer modeling, Sol. Syst. Res., 2017, vol. 51, no. 4, pp. 271–276. https://doi.org/10.1134/S0038094617040049
Petrov, D. and Kiselev, N., Computer simulation of position and maximum of linear polarization of asteroids, J. Quant. Spectrosc. Radiat. Transfer, 2018, vol. 204, no. 18, pp. 88–93.
Petrov, D.V., Shkuratov, Yu.G., Stankevich, D.G., Shevchenko, V.V., and Kozlova, E.A., The area of cold traps on the Lunar surface, Sol. Syst. Res., 2003, vol. 37, no. 4, pp. 260–265. https://doi.org/10.1023/A:1025022130047
Petrov, D., Synelnyk, E., Shkuratov, Y., and Videen, G., The T-matrix technique for calculations of scattering properties of ensembles of randomly oriented particles with different size, J. Quant. Spectrosc. Radiat. Transfer, 2006a, vol. 102, no. 1, pp. 85–110.
Petrov, D., Synelnyk, E., Shkuratov, Y.G., Videen, G., Scotto, C., Hart, M., and Eversole, J., Photopolarimetric properties of analytic models of some biological particles with irregular shape, J. Quant. Spectrosc. Radiat. Transfer, 2006b, vol. 102, no. 1, pp. 111–120.
Petrov, D., Shkuratov, Yu.G., and Videen, G., Sh-matrices method as applied to scattering by particles with layered structure, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 106, nos. 1–3, pp. 437–454.
Petrov, D., Shkuratov, Yu.G, and Videen, G., Influence of corrugation on light-scattering properties of capsule and finite-cylinder particles: analytic solution using Sh-matrices, J. Quant. Spectrosc. Radiat. Transfer, 2008, vol. 109, no. 4, pp. 650–669.
Petrov, D., Shkuratov, Yu.G., and Videen, G., Light scattering by a finite cylinder containing a spherical cavity using Sh-matrices, Opt. Commun., 2009, vol. 282, no. 2, pp. 156–166.
Petrov, D., Shkuratov, Yu.G., and Videen, G., An analytical solution to the light scattering from cube-like particles using Sh-matrices, J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, no. 3, pp. 474–482.
Petrov, D., Shkuratov, Yu., and Videen, G., Electromagnetic wave scattering from cuboid-like particles using Sh-matrices, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 2, pp. 155–162.
Petrov, D., Shkuratov, Yu., and Videen, G., Light scattering by arbitrary shaped particles with rough surfaces: Sh-matrices approach, J. Quant. Spectrosc. Radiat. Transfer, 2012, vol. 113, no. 18, pp. 2406–2418.
Petrov, D.V., Kiselev, N.N., and Zhuzhulina, E.A., Application of the Sh-matrices method to stimulate the scattering properties of atmosphereless celestial bodies, Izv. Krym. Astrofiz. Obs., 2018, vol. 114, no. 1, pp. 64–69.
Prialnik, D., Crystallization, sublimation, and gas release in the interior of a porous comet nucleus, Astrophys. J., 1992, vol. 388, pp. 196–202.
Price, M.C., Kearsley, A.T., Burchell, M.J., Hörz, F., Borg, J., Bridges, J.C., Cole, M.J., Floss, C., Graham, G., Green, S.F., Hoppe, P., Leroux, H., Marhas, K.K., Park, N., Stroud, R., et al., Comet 81P/Wild 2: the size distribution of finer (sub-10μm) dust collected by the Stardust spacecraft, Meteorit. Planet. Sci., 2010, vol. 45, pp. 1409–1428.
Pugacheva, S.G., Feoktistova, E.A., and Shevchenko, V.V., Deposits of water ice on the Lunar surface, Perspekt. Nauki, 2015, no. 10 (73), pp. 183–188.
Schubert, G., Anderson, J.D., Spohn, T., and McKinnon, W.B., Interior composition, structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere, Bagenal, F., Dowling, T., and McKinnon, W.B., Eds., Cambridge: Cambridge Univ. Press, 2004, pp. 281–306.
Scully, J.E.C., Buczkowski, D.L., Neesemann, A., Williams, D.A., Mest, S.C., Raymond, C.A., Nass, A., Hughson, K.H.G., Kneissl, T., Pasckert, J.H., Ruesch, O., Frigeri, A., Marchi, S., Combe, J-P., Schmedemann, N., et al., Ceres’ Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater, Icarus, 2018, vol. 316, pp. 46–62.
Shkuratov, Yu.G. and Ovcharenko, A.A., Polarization of light scattered by surfaces with complex microstructure at phase angles 0.1°–3.5°, Sol. Syst. Res., 2002, vol. 36, no. 1, pp. 62–67.
Shkuratov, Yu., Bondarenko, S., Kaydash, V., Videen, G., Muñoz, O., and Volten, H., Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 106, nos. 1–3, pp. 487–508. https://doi.org/10.1016/j.jqsrt.2007.01.031
Stubbs, T.J. and Wang, Y., Illumination conditions at the Asteroid 4 Vesta: implications for the presence of water ice, Icarus, 2012, vol. 217, no. 1, pp. 272–276.
Sun, Z. and Zhao, Y., The effects of grain size on bidirectional polarized reflectance factor measurements of snow, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 14, pp. 2372–2383. https://doi.org/10.1016/j.jqsrt.2011.05.011
Sunshine, J.M., Groussin, O., Schultz, P.H., A’Hearn, M.F., Feaga, L.M., Farnham, T.L., and Klaasen, K.P., The distribution of water ice in the interior of Comet Tempel 1, Icarus, 2007, vol. 190, no. 2, pp. 284–294.
Tanikawa, T., Hori, M., Aoki, T., Hachikubo, A., Kuchiki, K., Niwano, M., Matoba, S., Yamaguchi, S., and Stamnes, K., In situ measurements of polarization properties of snow surface under the Brewster geometry in Hokkaido, Japan, and northwest Greenland ice sheet, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 13946–13964.
Volten, H., Muñoz, O., Rol, E., de Haan, J.F., Vassen, W., Hovenier, J.W., Muinonen, K., and Nousiainen, T., Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, J. Geophys. Res.: Atmos., 2001, vol. 106, no. 15, pp. 17375–17401. https://doi.org/10.1029/2001JD900068
Warren, S.G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 1984, vol. 23, no. 8, pp. 1206–1225.
Warren, S.G. and Brandt, R.E., Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res.: Atmos., 2008, vol. 113, art. ID D14220. https://doi.org/10.1029/2007JD009744
Waterman, P.C., Numerical solution of electromagnetic scattering problems, in Computer Techniques for Electromagnetics, Oxford: Pergamon, 1973, pp. 97–157.
Zhuzhulina, E.A., Kiselev, N.N., and Shakhovskoi, D.N., Aperture polarimetry of selected comets at the Crimean Astrophysical Observatory, Izv. Krym. Astrofiz. Obs., 2018, vol. 114, no. 2, pp. 37–39.
Funding
The research was funded by the Russian Foundation for Basic Research and the government of the Сrimean Republic of the Russian Federation, grant no. 18-42-910019\18.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petrov, D.V., Zhuzhulina, E.A. & Kiselev, N.N. Influence of the Spectral Dependence of Refractive Index on the Polarimetric Properties of Ice Particles. Sol Syst Res 54, 70–83 (2020). https://doi.org/10.1134/S0038094620010086
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0038094620010086