Skip to main content
Log in

Geomorphological Analysis of ExoMars Candidate Landing Site Oxia Planum

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The article is devoted to a detailed photogeological and topographic analysis of the surface in the region of Oxia Planum, which is the most likely landing site for the rover of the ExoMars mission. The landing site consists of two topographic domains (highlands and lowlands) separated by a sharp regional slope. The highland domain accounts for approximately 25% of the landing site. The main unit of this domain is lava plains with an absolute model age of 3.65 Ga. These plains extend to the west and cover almost the entire surface of the lowlands, where they are overlain by a relatively thin (first tens of meters) layer of material removed from the highlands during the period of fluvial activity. The age of its final phase is estimated at 3.53 Ga. The material to be tested by the ExoMars rover is mainly associated with the final accumulation phase and is represented by deposits of dark and light smooth plains within the lowlands. The material of the dark plains mainly consists of a more coarse-grained fraction of the highland lava plains redeposited near the topographic boundary separating the highlands and lowlands. Deposits of the light plains are dominant at the landing site and are represented by a finer fraction of the material of the lava plains and light mantle material, in which clay minerals are likely predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., and Forget, F., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 2006, vol. 312, pp. 400–404.

    Article  ADS  Google Scholar 

  2. Bibring, J-P., Loizeau, D., Pelkey, S.M., Murchie, S., Mustard, J.F., Bishop, J., Ehlmann, L., Gondet, B., Mangold, N., Poulet, F., Roach, L.H., and Seelos, F., Coupled OMEGA-CRISM observations of Marwth Vallis, Proc. 37th Lunar and Planetary Science Conf., Woodlands, TX, 2007, no. 2160.

  3. Bishop, J., Loizeau, D., McKeown, N.K., Saper, L., Dyar, M.D., Des Marais, D.J., Parente, M., and Murchie, S.L., What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars, Planet. Space Sci., 2013, vol. 86, pp. 130–149.

    Article  ADS  Google Scholar 

  4. Bishop, J., Wray, J.J., Sessa, A., Danielsen, J., Ehlmann, L., Murchie, S.L., Horgan, B., Gross, C., Parente, M., and Seelos, F.P., Evidence of salty residues in layered outcrops at Mawrth Vallis and inplications for evaporite environment on early Mars, Proc. 49th Lunar and Planetary Science Conf., Woodlands, TX, 2018, no. 1117.

  5. Carr, M.H., The Surface of Mars, New Haven: Yale Univ. Press, 1981.

    Google Scholar 

  6. Carr, M.H., Water on Mars, New York: Oxford Univ. Press, 1996.

    Google Scholar 

  7. Carr, M.H., The Surface of Mars, Cambridge Univ. Press, 2006.

    Google Scholar 

  8. Carter, J., Quantin, C., Thollot, P., Loizeau, D., Ody, A., and Lozach, L., Oxia Planum, a clay-laden landing site proposed for the ExoMars rover mission: aqueous mineralogy and alteration scenarios, Proc. 47th Lunar and Planetary Science Conf., Woodlands, TX, 2016, no. 2064.

  9. Chojnacki, M., Banks, M., and Urso, A., Wind-driven erosion and exposure potential at Mars 2020 rover candidate-landing sites, J. Geophys. Res.: Planets, 2018, vol. 123, pp. 468–488. https://doi.org/10.1002/2017JE005460

    Article  ADS  Google Scholar 

  10. Ehlmann, B.L., Mustard, J.F. Fassett, C.I., Schon, S.C., Head, J.W., Des Marias, D.J., Grant, J.A., and Murchie, S.L., Clay minerals in delta deposits and organic preservation potential on Mars, Nat. Geosci., 2008, vol. 1, pp. 355–358.

    Article  ADS  Google Scholar 

  11. Ehlmann, B.L., Mustard, J.F., Swayze, G.A., Clark, R.N., Bishop, J.L., Poulet, F., Des Marais, D.J., Roach, L.H., Milliken, R.E., Wray, J.J., Barnouin-Jha, O., and Murchie, S.L., Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration, J. Geophys. Res.: Planets, 2009, vol. 114, art. ID E00D08. https://doi.org/10.1029/2009JE003339

    Article  ADS  Google Scholar 

  12. Fawdon, P., Balme, M.R., Bridges, J., Davis, J.M., Gupta, S., and Quantan-Nataf, C., The ancient fluvial catchment of Oxia Planum: the ExoMars 2020 rover landing site, Proc. 50th Lunar and Planetary Science Conf., Woodlands, TX, 2019, no. 2356.

  13. Greeley, R. and Spudis, P., Volcanism on Mars, Rev. Geophys. Space Phys., 1981, vol. 19, pp. 13–41.

    Article  ADS  Google Scholar 

  14. Hartmann, W.K., Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 2005, vol. 174, pp. 294–320.

    Article  ADS  Google Scholar 

  15. Head, J.W., Kreslavsky, M.A., and Pratt, S., Northern lowlands on mars: evidence for widespread volcanic flooding and tectonic deformation in Hesperian Period, J. Geophys. Res.: Planets, 2002, vol. 107, no. 1, art. ID 5003. https://doi.org/10.1029/2000JE001445

    Article  ADS  Google Scholar 

  16. Ivanov, B.A., Mars/Moon cratering rate ratio estimates, Space Sci. Rev., 2001, vol. 96, pp. 87–104.

    Article  ADS  Google Scholar 

  17. Ivanov, M.A. and Head, J.W., Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data, J. Geophys. Res.: Planets, 2001, vol. 106, pp. 3275–3296.

    Article  ADS  Google Scholar 

  18. Loizeau, D., Mangold, N., Poulet, F., Bibring, J.-P., Gendrin, A., Gomez, C., Langevin, Y., Gondet, B., Ansan, V., Masson, P., and Neukum, G., Phyllosilicates rich terrains in Mawrth Vallis region, Mars, as seen by OMEGA and HRSC/Mars Express, Proc. 37th Lunar and Planetary Science Conf., Houston, TX: Lunar Planet. Inst., 2006, no. 1658.

  19. Loizeau, D., Mangold, N., Poulet, F., Ansan, V., Hauber, E., Bibring, J-P., Gondet, B., Langevin, Y., Masson, P., and Neukum, G., Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM, Icarus, 2010, vol. 205, pp. 396–418.

    Article  ADS  Google Scholar 

  20. Loizeau, D., Werner, S.C., Mangold, N., Bibring, J.-P., and Vago, J.L., Chronology of deposition and alteration in the Mawrth Vallis region, Mars, Planet. Space Sci., 2012, vol. 72, pp. 31–43.

    Article  ADS  Google Scholar 

  21. Loizeau, D., Mangold, N., Poulet, F., Bibring, J-P., Bishop, J.L., Michalski, J., and Quantin, C., History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site, J. Geophys. Res.: Planets, 2015, vol. 120, pp. 1820–1846. https://doi.org/10.1002/2015JE004894

    Article  ADS  Google Scholar 

  22. Loizeau, D., Balme, M.R., Bibring, J.-P., Bridges, J.C., Fairén, A.G., Flahaut, J., Hauber, E., Lorenzoni, L., Poulakis, P., Rodionov, D., Vago, J.L., Werner, S., Westall, F., Whyte, L., and Williams, R.M., Exo Mars 2020 surface mission: choosing a landing site, Proc. 50th Lunar and Planetary Science Conf., Woodlands, TX, 2019, no. 2378.

  23. Mangold, N., Poulet, F., Mustard, J.F., Bibring, J.-P., Gondet, B., Langevin, Y., Ansan, V., Masson, P., Fassett, C., Head, J. W., Hoffmann, H., and Neukum, G., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust, J. Geophys. Res.: Planets, 2007, vol. 112, art. ID E08S04. https://doi.org/10.1029/2006JE002835

    Article  Google Scholar 

  24. McEwen, A.S., Eliason, E.M., Bergstrom, J.W., Bridges, N.T., Hansen, C.J., Delamere, W.A., Grant, J.A., Gulick, V.C., Herkenhoff, K.E., Keszthelyi, L., Kirk, R.L., Mellon, M.T., Squyres, S.W., Thomas N., and Weitz C.M., Mars reconnaissance orbiter’s High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res.: Planets, 2007, vol. 112, art. ID E05S02. https://doi.org/10.1029/2005JE002605

    Article  Google Scholar 

  25. Molina, A., López, I., Prieto-Ballesteros, O., Fernández-Remolar, D., Ángel de Pablo, M., and Gómez, F., Coogoon Valles, western Arabia Terra: hydrological evolution of a complex Martian channel system, Icarus, 2017, vol. 293, pp. 27–44.

    Article  ADS  Google Scholar 

  26. Murchie, S., Arvidson, R., Bedini, P., et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res.: Planets, 2007, vol. 112, art. ID E05S03. https://doi.org/10.1029/2006JE002682

    Article  Google Scholar 

  27. Murchie, S., Mustard, J.F., Ehlmann, B.L., et al., A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter, J. Geophys. Res.: Planets, 2009, vol. 114, art. ID E00D06. https://doi.org/10.1029/2009JE003342

    Article  Google Scholar 

  28. Mustard, J.F., Poulet, F., Head, J.W., Mangold, N., Bibring, J.-P., Pelkey, S.M., Fassett, C.I., Langevin, Y., and Neukum, G., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian, J. Geophys. Res.: Planets, 2007, vol. 112, art. ID E08S03. https://doi.org/10.1029/2006JE002834

    Article  Google Scholar 

  29. Mustard, J.F., Murchie, S.L., Pelkey, S.M., et al., Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument, Nature, 2008, vol. 454, pp. 305–309.

    Article  ADS  Google Scholar 

  30. Mustard, J.F., Ehlmann, B.L., Murchie, S.L., Poulet, F., Mangold, N., Head, J.W., Bibring, J.-P., and Roach, L.H., Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin, J. Geophys. Res.: Planets, 2009, vol. 114, art. ID E00D12. https://doi.org/10.1029/2009JE003349

    Article  ADS  Google Scholar 

  31. Noe Dobrea, E.Z., Bishop, J.L., McKeown, N.K., Fu, R., Rossi, C.M., Michalski, J.R., Heinlein, C., Hanus, V., Poulet, F., Mustard, J.F., Murchie, S., McEwen, A.S., Swayze, G., Bibring, J-P., Malaret, E., and Hash, C., Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin, J. Geophys. Res.: Planets, 2010, vol. 115, art. ID E00D19. https://doi.org/10.1029/2009JE003351

    Article  Google Scholar 

  32. Pajola, M., Rossato, S., Baratti, E., Mangili, C., Mancarella, F., McBride, K., and Coradini, M., The Simud-Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration, Icarus, 2016, vol. 268, pp. 355–381.

    Article  ADS  Google Scholar 

  33. Pajola, M., Rossato, S., Baratti, E., Pozzobon, R., Quantin, C., Carter, J., and Thollot, P., Boulder abundances and size-frequency distributions on Oxia Planum-Mars: Scientific implications for the 2020 ESA ExoMars rover, Icarus, 2017, vol. 296, pp. 73–90.

    Article  ADS  Google Scholar 

  34. Plescia, J.B. and Golombek, M.P., Origin of planetary wrinkle ridges based on the study of terrestrial analogs, Geol. Soc. Am. Bull., 1986, vol. 97, pp. 1289–1299.

    Article  ADS  Google Scholar 

  35. Poulet, F., Carter, J., Bishop, J.L., Loizeau, D., and Murchie, S.M., Mineral abundances at the final four curiosity study sites and implications for their formation, Icarus, 2014, vol. 231, pp. 65–76.

    Article  ADS  Google Scholar 

  36. Quantin, C., Carter, J., Thollot, P., Broyer, J., Lozach, L., Davis, J., Grindrod, P., Pajola, M., Baratti, E., Rossato, S., Allemand, P., Bultel, B., Leyrat, C., Fernando, J., and Ody, A., Oxia Planum, the landing site for ExoMars 2018, Proc. 47th Lunar and Planetary Science Conf., Woodlands, TX, 2016, no. 2863.

  37. Rotto, S. and Tanaka, K.L., Geologic/geomorphic map of the Chryse Planitia region of Mars, U.S. Geol. Surv. Invest. Ser., 1995, no. I-2441.

  38. Smith, D.E., Zuber, M.T., Solomon, S.C., Phillips, R.J., Head, J.W., Garvin, J.B., Banerdt, W.B., Muhleman, D.O., Pettengill, G.H., Neumann, G.A., Lemoine, F.G., Abshire, J.B., Aharonson, O., Brown, C.D., Hauck, S.A., et al., The global topography of Mars and implications for surface evolution, Science, 1999, vol. 284, pp. 1495–1503.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ivanov.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.A., Slyuta, E.N., Grishakina, E.A. et al. Geomorphological Analysis of ExoMars Candidate Landing Site Oxia Planum. Sol Syst Res 54, 1–14 (2020). https://doi.org/10.1134/S0038094620010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620010050

Keywords:

Navigation