Skip to main content
Log in

RETRACTED ARTICLE: Exoplanet Habitability: Potential O2/O3 Biosignatures in the Ultraviolet

  • Published:
Solar System Research Aims and scope Submit manuscript

This article was retracted on 01 November 2019

This article has been updated

Abstract

Currently, the strongest remotely detectable biosignature in the Earth’s atmosphere is molecular oxygen (O2) produced during photosynthesis. However, recent studies of geochemical signatures on Earth-like exoplanets suggest that for most of them, atmospheric O2 would not be detectable by a remote observer, except during the last ~500 Myr of evolution. During a long period in the Earth’s history (2.0–0.7 Gyr ago), O2 was likely present in the atmosphere but in low concentrations, estimated at ~0.1–1% of the current level. Although spectral manifestations of O2 are weak at such low concentrations; however, ozone (O3) molecules, which are in a photochemical equilibrium with such low O2 concentrations, cause noticeable spectral features in the Hartley–Huggins UV band (~0.25 µm), with a weaker manifestation in the medium IR-region at about 9.7 µm. Thus, taking the Earth’s history as an informative example (proxy), it can be concluded that a category of exoplanets may exist for which the ordinary atmospheric biosignature can only be identified in the UV range. Accordingly, the article emphasizes the importance of planning for UV observation capabilities when designing future space telescopes for direct observations of exoplanets and their atmospheres, such as the World Space Observatory-UV (WSO-UV), Habitable Exoplanet Observatory (HabEx), or Large UV/Optical/Infrared Surveyor (LUVOIR), for the detection of ozone O3 in the atmospheres of planets with intermediate oxidation states. The article also discusses mitigation strategies for the so-called false positives, i.e., detection of O3 generated in abiotic processes. It also emphasizes the importance and broad implications of studying the Earth’s history as a window to understanding potential biosignatures for exoplanets and the importance of UV observations for identifying habitable exoplanets with next-generation space telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Change history

REFERENCES

  1. Abe, Y., Abe-Ouchi, A., Sleep, N.H., and Zahnle, K.J., Habitable zone limits for dry planets, Astrobiology, 2011, vol. 11, pp. 443–460.

    Article  ADS  Google Scholar 

  2. Airapetian, V.S., Glocer, A., Khazanov, G. V., Loyd, R.O.P., France, K., Sojka, J., Danchi, W.C., and Liemohn, M.W., How hospitable are space weather affected habitable zones? The role of ion escape, Astrophys. J., 2017, vol. 836, pp. L3–L8.

    Article  ADS  Google Scholar 

  3. Anglada-Escude, G., Amado, P.J., Barnes, J., Berdinas, Z.M., Butler, R.P., Coleman, G.A.L., de la Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, S.V., Jenkins, J.S., Jones, H.R.A., Kiraga, M., Kuerster, M., et al., A terrestrial planet candidate in a temperate orbit around Proxima Centauri, Nature, 2016, vol. 536, pp. 437–440.

    Article  ADS  Google Scholar 

  4. Arney, G., Domagal-Goldman, S.D., Meadows, V.S., Wolf, E.T., Schwieterman, E., Charnay, B., Claire, M., Hebrard, E., and Trainer, M.G., The pale orange dot: the spectrum and habitability of hazy Archean Earth, Astrobiology, 2016, vol. 16, pp. 873–899.

    Article  ADS  Google Scholar 

  5. Batalha, N.M., Exploring exoplanet populations with NASA’s Kepler mission, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 12 647–12 654.

    Article  Google Scholar 

  6. Bisikalo, D.V., Shematovich, V.I., Cherenkov, A.A., Fossati, L., and Moestl, C., Atmospheric mass loss from hot Jupiter irradiated by stellar superflares, Astrophys. J., 2018, vol. 869, p. 108.

    Article  ADS  Google Scholar 

  7. Bolcar, M.R., Aloezos, S., Bly, V.T., Collins, C., Crooke, J., Dressing, C.D., Fantano, L., Feinberg, L.D., France, K., Gochar, G., Gong, Q., Hylan, J.E., Jones, A., Linares, I., Postman, M., et al., The Large UV/Optical/Infrared Surveyor (LUVOIR): decadal mission concept design update, Proc. SPIE, 2017, vol. 10 398, art. ID 1039809.

    Google Scholar 

  8. Bolmont, E., Gallet, F., Mathis, S., Charbonnel, C., Amard, L., and Alibert, Y., Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets, Astron. Astrophys., 2017, vol. 604, p. A113.

    Article  ADS  Google Scholar 

  9. Boyarchuk, A.A., Shustov, B.M., Savanov, I.S., Sachkov, M.E., Bisikalo, D.V., Mashonkina, L.I., Wiebe, D.Z., Shematovich, V.I., Shchekinov, Yu.A., Ryabchikova, T.A., Chugai, N.N., Ivanov, P.B., Voshchinnikov, N.V., Gomez de Castro, A.I., Lamzin, S.A., et al., Scientific problems addressed by the Spektr-UV space project (world space Observatory—Ultraviolet), Astron. Rep., 2016, vol. 60, no. 1, pp. 1–42.

    Article  ADS  Google Scholar 

  10. Catling, D.C., Krissansen-Totton, J., Kiang, N.Y., Crisp, D., Robinson, T.D., DasSarma, S., Rushby, A.J., Del Genio, A., Bains, W., and Domagal-Goldman, S., Exoplanet biosignatures: a framework for their assessment, Astrobiology, 2018, vol. 18, pp. 709–738.

    Article  ADS  Google Scholar 

  11. Claire, M., Catling, D., and Zahnle, K., Biogeochemical modeling of the rise in atmospheric oxygen, Geobiology, 2006, vol. 4, pp. 239–269.

    Article  Google Scholar 

  12. Cole, D.B., Reinhard, C.T., Wang, X., Gueguen, B., Halverson, G.P., Gibson, T., Hodgskiss, M.S., McKenzie, N.R., Lyons, T.W., and Planavsky, N.J., A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic, Geology, 2016, vol. 44, pp. 555–558.

    Article  ADS  Google Scholar 

  13. Davenport, J.R.A., Kipping, D.M., Sasselov, D., Matthews, J.M., and Cameron, C., MOST observations of our nearest neighbor: flares on Proxima Centauri, Astrophys. J., 2016, vol. 829, pp. L31–L36.

    Article  ADS  Google Scholar 

  14. Des Marais, D.J., Harwit, M.O., Jucks, K.W., Kasting, J.F., Lin, D.N.C., Lunine, J.I., Schneider, J., Seager, S., Traub, W.A., and Woolf, N.J., Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets, Astrobiology, 2002, vol. 2, pp. 153–181.

    Article  ADS  Google Scholar 

  15. Dittmann, J.A., Irwin, J.M., Charbonneau, D., Bonfils, X., Astudillo-Defru, N., Haywood, R.D., Berta-Thompson, Z.K., Newton, E.R., Rodriguez, J.E., Winters, J.G., Tan, T., Almenara, J., Bouchy, F., Delfosse, X., Forveille, T., et al., A temperate rocky super-Earth transiting a nearby cool star, Nature, 2017, vol. 544, pp. 333–336.

    Article  ADS  Google Scholar 

  16. Domagal-Goldman, S.D., Segura, A., Claire, M.W., Robinson, T.D., and Meadows, V.S., Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth, Astrophys. J., 2014, vol. 792, art. ID 90.

    Article  ADS  Google Scholar 

  17. Driscoll, P. and Barnes, R., Tidal heating of earth-like exoplanets around m stars: thermal, magnetic, and orbital evolutions, Astrobiology, 2015, vol. 15, pp. 739–760.

    Article  ADS  Google Scholar 

  18. Farquhar, J., Savarino, J., Airieau, S., and Thiemens, M.H., Observation of wavelength-sensitive mass independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere, J. Geophys. Res.: Planets, 2001, vol. 106, pp. 829–839.

    Article  Google Scholar 

  19. France, K., Loyd, R.O.P., Youngblood, A., Brown, A., Schneider, P.C., Hawley, S.L., Froning, C.S., Linsky, J.L., Roberge, A., Buccino, A.P., Davenport, J.R.A., Fontenla, J.M., Kaltenegger, L., Kowalski, A.F., Mauas, P.J.D., et al., The MUSCLES treasury survey. I. Motivation and overview, Astrophys. J., 2016, vol. 820, art. ID 89.

    Article  ADS  Google Scholar 

  20. Fossati, L., Bisikalo, D., Lammer, H., Shustov, B., and Sachkov, M., Major prospects of exoplanet astronomy with the World Space Observatory–UltraViolet mission, Astrophys. Space Sci., 2014, vol. 354, pp. 9–19.

    Article  ADS  Google Scholar 

  21. Fujii, Y., Angerhausen, D., Deitrick, R., Domagal-Goldman, S.D., Grenfell, J.L., Hori, Y., Kane, S.R., Pallé, E., Rauer, H., Siegler, N., Stapelfeldt, K., and Stevenson, B., Exoplanet biosignatures: observational prospects, Astrobiology, 2018, vol. 18, pp. 739–778.

    Article  ADS  Google Scholar 

  22. Gaudi, B.S., Mennesson, B., Seager, S., Cahoy, K., Clarke, J., Domagal-Goldman, S., Feinberg, L., Guyon, O., Kasdin, J., Marois, C., Mawet, D., Tamura, M., Mouillet, D., Prusti, T., Quirrenbach, A., et al., The Habitable Exoplanet Observatory (HabEx), Proc. SPIE, 2018, vol. 10 698, art. ID 106980P.

  23. Gillon, M., Triaud, A.H.M.J., Demory, B.-O., Jehin, E., Agol, E., Deck, K.M., Lederer, S.M., de Wit, J., Burdanov, A., Ingalls, J.G., Bolmont, E., Leconte, J., Raymond, S.N., Selsis, F., Turbet, M., et al., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, 2017, vol. 542, pp. 456–460.

    Article  ADS  Google Scholar 

  24. Haqq-Misra, J., Kopparapu, R.K., Batalha, N.E., Harman, C.E., and Kasting, J.F., Limit cycles can reduce the width of the Habitable Zone, Astrophys. J., 2016, vol. 827, p. 120.

    Article  ADS  Google Scholar 

  25. Kane, S.R., Hill, M.L., Kasting, J.F., Kopparapu, R.K., Quintana, E.V., Barclay, T., Batalha, N.M., Borucki, W.J., Ciardi, D.R., Haghighipour, N., Hinkel, N.R., Kaltenegger, L., Selsis, F., and Torres, G., A catalog of Kepler Habitable Zone exoplanet candidates, Astrophys. J., 2016, vol. 830, no. 1.

  26. Kasting, J.F. and Donahue, T.M., The evolution of atmospheric ozone, J. Geophys. Res.: Oceans, 1980, vol. 85, pp. 3255–3263.

    Article  ADS  Google Scholar 

  27. Kasting, J.F., Whitmire, D.P., and Reynolds, R.T., Habitable zones around main sequence stars, Icarus, 1993, vol. 101, pp. 108–128.

    Article  ADS  Google Scholar 

  28. Kasting, J.F., Kopparapu, R., Ramirez, R.M., and Harman, C.E., Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 111, pp. 1–6.

    Google Scholar 

  29. Kawahara, H., Matsuo, T., Takami, M., Fujii, Y., Kotani, T., Murakami, N., Tamura, M., and Guyon, O., Can ground-based telescopes detect the oxygen 1.27 mm absorption feature as a biomarker in exoplanets? Astrophys. J., 2012, vol. 758, p. 13.

    Article  ADS  Google Scholar 

  30. Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V., and Deshpande, R., Habitable zones around main-sequence stars: new estimates, Astrophys. J., 2013, vol. 765, p. 131.

    Article  ADS  Google Scholar 

  31. Kopparapu, R.K., Ramirez, R.M., Schotte-Kotte, J., Kasting, J.F., Domagal-Goldman, S., and Eymet, V., Habitable zones around main-sequence stars: dependence on planetary mass, Astrophys. J., 2014, vol. 787, pp. L29–L33.

    Article  ADS  Google Scholar 

  32. Kopparapu, R.K., Wolf, E.T., Haqq-Misra, J., Yang, J., Kasting, J.F., Meadows, V., Terrien, R., and Mahadevan, S., The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models, Astrophys. J., 2016, vol. 819, p. 84.

    Article  ADS  Google Scholar 

  33. Kulikov, Yu.N., Lammer, H., Lichtenegger, H.I.M., Penz, T., Breuer, D., Spohn, T., Lundin, R., and Biernat, H.K., A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars, Space Sci. Rev., 2007, vol. 129, pp. 207–243.

    Article  ADS  Google Scholar 

  34. Lammer, H., Origin and Evolution of Planetary Atmospheres: Implications for Habitability. Springer Briefs in Astronomy, Berlin: Springer-Verlag, 2013.

    Book  Google Scholar 

  35. Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Y.N., et al., What makes a planet habitable? Astron. Astrophys. Rev., 2009, vol. 17, pp. 181–249.

    Article  ADS  Google Scholar 

  36. Lissauer, J., Jontof-Hutter, D., Rowe, J., Fabrycky, D.C., Lopez, E.D., Agol, E., Marcy, G.W., Deck, K.M., Fischer, D.A., Fortney, J.J., Howell, S.B., Isaacson, H., Jenkins, J.M., Kolbl, R., Sasselov, D., et al., All six planets known to orbit Kepler-11 have low densities, Astrophys. J., 2013, vol. 770, pp. 1–15.

    Article  Google Scholar 

  37. Lovis, C., Snellen, I., Mouillet, D., Pepe, F., Wildi, F., Astudillo-Defru, N., Beuzit, J.-L., Bonfils, X., Cheetham, A., Conod, U., Delfosse, X., Ehrenreich, D., Figueira, P., Forveille, T., Martins, J.H.C., et al., Atmospheric characterization of Proxima b by coupling the SPHERE high contrast imager to the ESPRESSO spectrograph, Astron. Astrophys., 2016, vol. 599, p. A16.

    Article  Google Scholar 

  38. Luger, R. and Barnes, R., Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs, Astrobiology, 2015, vol. 15, pp. 119–143.

    Article  ADS  Google Scholar 

  39. Luger, R., Barnes, R., Lopez, E., Fortney, J., Jackson, B., and Meadows, V., Habitable evaporated cores: Transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs, Astrobiology, 2015, vol. 15, pp. 57–88.

    Article  ADS  Google Scholar 

  40. Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S., and Summons, R.E., Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago, Sci. Adv., 2016, vol. 2, pp. e1600134–e1600134.

    Article  ADS  Google Scholar 

  41. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, pp. 307–315.

    Article  ADS  Google Scholar 

  42. Meadows, V.S., Reflections on O2 as a biosignature in exoplanetary atmospheres, Astrobiology, 2017, vol. 17, pp. 1022–1052.

    Article  ADS  Google Scholar 

  43. Meadows, V.S., Reinhard, C.T., Arney, G.N., Parenteau, M.N., Schwieterman, E.W., Domagal-Goldman, S.D., Lincowski, A.P., Stapelfeldt, K.R., Rauer, H., DasSarma, S., Hegde, S., Narita, N., Deitrick, R., Lustig-Yaeger, J., Lyons, T.W., et al., Understanding oxygen as a biosignature in the context of its environment, Astrobiology, 2018, vol. 18, pp. 630–662.

    Article  ADS  Google Scholar 

  44. Mennesson, B., Gaudi, S., Seager, S., Cahoy, K., Domagal-Goldman, S., Feinberg, L., Guyon, O., Kasdin, J., Marois, C., Mawet, D., Tamura, M., Mouillet, D., Prusti, T., Quirrenbach, A., Robinson, T., et al., The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements, Proc. SPIE, 2016, vol. 99 040.

  45. Morton, T.D., Bryson, S.T., Coughlin, J.L., Rowe, J.F., Ravichandran, G., Petigura, E.A., Haas, M.R., and Batalha, N.M., False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives, Astrophys. J., 2016, vol. 822, p. 86.

    Article  ADS  Google Scholar 

  46. Noack, L., Honing, D., Rivoldini, A., Heistracher, C., Zimov, N., Journaux, B., Lammer, H., van Hoolst, T., and Bredehöft, J.H., Water-rich planets: How habitable is a water layer deeper than on Earth? Icarus, 2016, vol. 277, pp. 215–236.

    Article  ADS  Google Scholar 

  47. Panchuk, V.E., Klochkova, V.G., Sachkov, M.E., and Yushkin, M.V., Doppler methods of search and monitoring of exoplanets, Sol. Syst. Res., 2015, vol. 49, pp. 420–429.

    Article  ADS  Google Scholar 

  48. Paradise, A. and Menou, K., GCM simulations of unstable climates in the habitable zone, Astrophys. J., 2017, vol. 848, art. ID 33.

    Article  ADS  Google Scholar 

  49. Pavlov, A.A. and Kasting, J.F., Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere, Astrobiology, 2002, vol. 2, pp. 27–41.

    Article  ADS  Google Scholar 

  50. Pierrehumbert, R. and Gaidos, E., Hydrogen greenhouse planets beyond the habitable zone, Astrophys. J. Lett., 2011, vol. 734, pp. L13–L17.

    Article  ADS  Google Scholar 

  51. Planavsky, N.J., Reinhard, C.T., Wang, X., Thomson, D., Mcgoldrick, P., Rainbird, R.H., Johnson, T., Fischer, W.W., and Lyons, T.W., Low mid-proterozoic atmospheric oxygen levels and the delayed rise of animals, Science, 2014, vol. 346, pp. 635–638.

    Article  ADS  Google Scholar 

  52. Ranjan, S., Wordsworth, R.D., and Sasselov, D.D., The surface UV environment on planets orbiting M dwarfs: implications for prebiotic chemistry and the need for experimental follow-up, Astrophys. J., 2017, vol. 843, p. 110.

    Article  ADS  Google Scholar 

  53. Reinhard, C.T., Olson, S.L., Schwieterman, E.W., and Lyons, T.W., False negatives for remote life detection on ocean-bearing planets: lessons from the early earth, Astrobiology, 2017, vol. 17, pp. 287–297.

    Article  ADS  Google Scholar 

  54. Ribas, I., Bolmont, E., Selsis, F., Reiners, A., Leconte, J., Raymond, S.N., Engle, S.G., Guinan, E.F., Morin, J., Turbet, M., Forget, F., and Anglada-Escude, G., The habitability of Proxima Centauri b, Astron. Astrophys., 2016, vol. 596, p. A111.

    Article  ADS  Google Scholar 

  55. Robinson, T.D., Ennico, K., Meadows, V.S., Sparks, W., Bussey, D.B.J., Schwieterman, E.W., and Breiner, J., Detection of ocean glint and ozone absorption using LCROSS Earth Observations, Astrophys. J., 2014, vol. 787, p. 171.

    Article  ADS  Google Scholar 

  56. Robinson, T.D., Stapelfeldt, K.R., and Marley, M.S., Characterizing rocky and gaseous exoplanets with 2 m class space-based coronagraphs, Publ. Astron. Soc. Pac., 2016, vol. 128, p. 025003.

    Article  ADS  Google Scholar 

  57. Sachkov, M., Shustov, B., and Gómez de Castro, A.I., Instrumentation of the WSO-UV project, Proc. SPIE, 2014, vol. 9144, p. 914 402.

    Article  Google Scholar 

  58. Sachkov, M., Panchuk, V., Yushkin, M., and Fatkhullin, T., Optical design of WUVS instrument: WSO–UV spectrographs, Proc. SPIE, 2016, vol. 9905, p. 990 537.

    Article  Google Scholar 

  59. Schwieterman, E.W., Meadows, V.S., Domagal-Goldman, S.D., Deming, D., Arney, G.N., Luger, R., Harman, C.E., Misra, A., and Barnes, R., Identifying planetary biosignature impostors: spectral features of CO and O4 resulting from abiotic O2/O3 production, Astrophys. J., 2016, vol. 819, pp. L13–L17.

    Article  ADS  Google Scholar 

  60. Schwieterman, E., Kiang, N., Parenteau, M., Harman, C.E., DasSarma, S., Fisher, T.M., Arney, G.N., Hartnett, H.E., Reinhard, C.T., Olson, S.L. Meadows, V.S., Cockell, C.S., Walker, S.I., Grenfell, J.L., Hegde, S., et al., Exoplanet biosignatures: a review of remotely detectable signs of life, Astrobiology, 2018, vol. 18, pp. 663–708.

    Article  ADS  Google Scholar 

  61. Seager, S., Exoplanet habitability, Science, 2013, vol. 340, pp. 577–581.

    Article  ADS  Google Scholar 

  62. Seager, S., Turnbull, M., Sparks, W., Thomson, M., Shaklan, S.B., Roberge, A., Kuchner, M., Kasdin, N.J., Domagal-Goldman, S., Cash, W., Warfield, K., Lisman, D., Scharf, D., Webb, D., Trabert, R., et al., The Exo-S probe class starshade mission, Proc. SPIE, 2015, vol. 9605, p. 96050W

    Article  ADS  Google Scholar 

  63. Segura, A., Krelove, K., Kasting, J.F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M., and Mlawer, E., Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars, Astrobiology, 2003, vol. 3, pp. 689–708.

    Article  ADS  Google Scholar 

  64. Shields, A.L., Bitz, C.M., Meadows, V.S., Joshi, M.M., and Robinson, T.D., Spectrum-driven planetary deglaciation due to increases in stellar luminosity, Astrophys. J., 2014, vol. 785, pp. L9–L12.

    Article  ADS  Google Scholar 

  65. Shields, A.L., Ballard, S., and Johnson, J.A., The habitability of planets orbiting M-dwarf stars, Phys. Rep., 2016, vol. 663, pp. 1–38.

    Article  MathSciNet  ADS  Google Scholar 

  66. Stark, C.C., Roberge, A., Mandell, A., and Robinson, T.D., Maximizing the ExoEarth candidate yield from a future direct imaging mission, Astrophys. J., 2014, vol. 795, p. 122.

    Article  ADS  Google Scholar 

  67. Stevenson, D., Life-sustaining planets in interstellar space? Nature, 1999, vol. 400, p. 32.

    Article  ADS  Google Scholar 

  68. Stevenson, K.B., Lewis, N.K., Bean, J.L., Beichman, C., Fraine, J., Kilpatrick, B.M., Krick, J.E., Lothringer, J.D., Mandell, A.M., Valenti, J.A., Agol, E., Angerhausen, D., Barstow, J.K., Birkmann, S.M., Burrows, A., et al., Transiting exoplanet studies and community targets for JWST’s Early Release Science Program, Publ. Astron. Soc. Pac., 2016, vol. 128, p. 94 401.

    Article  Google Scholar 

  69. Tavrov, A., Kameda, S., Yudaev, A., Dzyuban, I., Kiselev, A. Shashkova, I., Korablev, O., Sachkov, M., Nishikawa, J., Tamura, M., Go, M., Keigo, E., Ikoma, M., and Narita, N., Stellar imaging coronagraph and exoplanet coronal spectrometer: two additional instruments for exoplanet exploration onboard the WSO-UV 1.7-m orbital telescope, J. Astron. Telesc., Instrum., Syst., 2018, vol. 4, p. 044 001.

    Article  Google Scholar 

  70. Tian, F., History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs, Earth Planet. Sci. Lett., 2015, vol. 432, pp. 126–132.

    Article  ADS  Google Scholar 

  71. Walker, S.I., Bains, W., Cronin, L., DasSarma, S., Danielache, S., Domagal-Goldman, S., Kacar, B., Kiang, N.Y., Lenardic, A., Reinhard, C.T., Moore, W., Schwieterman, E.W., Shkolnik, E.L., and Smith H.B., Exoplanet biosignatures: future directions, Astrobiology, 2018, vol. 18, pp. 779–824.

    Article  ADS  Google Scholar 

  72. Wolf, E.T., Assessing the habitability of the TRAPPIST-1 system using a 3D climate model, Astrophys. J., 2017, vol. 839, pp. L1–L9.

    Article  ADS  Google Scholar 

  73. Wordsworth, R. and Pierrehumbert, R., Abiotic oxygen dominated atmospheres on terrestrial habitable zone planets, Astrophys. J., 2014, vol. 785, pp. L20–L24.

    Article  ADS  Google Scholar 

  74. Yang, J., Cowan, N.B., and Abbot, D.S., Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, Astrophys. J. Lett., 2013, vol. 771, pp. L45–L49.

    Article  ADS  Google Scholar 

  75. Yang, J., Boue, G., Fabrycky, D.C., and Abbot, D.S., Strong dependence of the inner edge of the habitable zone on planetary rotation rate, Astrophys. J., 2014, vol. 787, pp. L2–L6.

    Article  ADS  Google Scholar 

  76. Zsom, A., Seager, S., de Wit, J., and Stamenkovic, V., Toward the minimum inner edge distance of the habitable zone, Astrophys. J., 2013, vol. 778, p. 109.

    Article  ADS  Google Scholar 

Download references

Funding

The work by V.I. Shematovich was supported by the Russian Foundation for Basic Research, project no. 18-02-00721, and by the Presidium of the Russian Academy of Sciences within Basic Research Program no. 28(KP19-270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shematovich.

Additional information

Translated by A. Kobkova

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1134/S003809461908001X

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachkov, M.E., Shematovich, V.I. RETRACTED ARTICLE: Exoplanet Habitability: Potential O2/O3 Biosignatures in the Ultraviolet. Sol Syst Res 53, 322–331 (2019). https://doi.org/10.1134/S003809461905006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809461905006X

Keywords:

Navigation