Skip to main content
Log in

Numerical Modeling of the General Circulation of the Atmosphere of Titan at Equinox

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A new model of the general circulation of the atmosphere of Titan is discussed. This model is based on numerical grid integration of the complete equations of gas dynamics with a fine spatial resolution. The relaxation approximation is used to calculate the power of radiation heating and cooling the atmospheric gas. The results of simulation of the general atmospheric circulation of Titan at equinox with this model are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Belotserkovskii, O.M., Kraginskii, L.M., and Oparin, A.M., Numerical simulation of 3D flows in stratified atmosphere caused by strong large-scale disturbances, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 11, pp. 1744–1758.

    MATH  Google Scholar 

  2. Bird, M.K., Allison, M., Asmar, S.W., Atkinson, D.H., Avruch, I.M., Dutta-Roy, R., Dzierma, Y., Edenhofer, P., Folkner, W.M., Gurvits, L.I., Johnston, D.V., Plettemeier, D., Pogrebenko, S.V., Preston, R.A., and Tyler, G.L., The vertical profile of winds on Titan, Nature, 2005, vol. 438, pp. 800–802.

    Article  ADS  Google Scholar 

  3. Chetverushkin, B.N., Mingalev, I.V., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S., and Mingalev, O.V., Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth, Math. Models Comp. Simul., 2018, vol. 10, no. 2, pp. 176–185.

    Article  Google Scholar 

  4. Flasar, F.M., The dynamic meteorology of Titan, Planet. Space Sci., 1998, vol. 46, pp. 1125–1147.

    Article  ADS  Google Scholar 

  5. Flasar, F.M., Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Kunde, V.G., Nixon, C.A., Bjoraker, G.L., Jennings, D.E., Romani, P.N., Simon-Miller, A.A., Bezard, B., Coustenis, A., Irwin, P.G.J., Teanby, N.A., Brasunas, J., et al., Titan’s atmospheric temperatures, winds, and composition, Science, 2005, vol. 308, no. 5724, pp. 975–978.

    Article  ADS  Google Scholar 

  6. Golitsyn, G.S., Another look at atmospheric dynamics on Titan and some of its general consequences, Icarus, 1975, vol. 24, pp. 70–75.

    Article  ADS  Google Scholar 

  7. Hourdin, F., Talagrand, O., and Sadourny, R., Numerical simulation of the general circulation of the atmosphere of Titan, Icarus, 1995, vol. 117, pp. 358–374.

    Article  ADS  Google Scholar 

  8. Izakov, M.N., Venus express: the presence of turbulence in the mesosphere of Venus is confirmed, Sol. Syst. Res., 2010a, vol. 44, no. 2, pp. 87–95.

    Article  ADS  Google Scholar 

  9. Izakov, M.N., Dissipation of buoyancy waves and turbulence in the atmosphere of Venus, Sol. Syst. Res., 2010b, vol. 44, no. 6, pp. 475–486.

    Article  ADS  Google Scholar 

  10. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ mnogokomponentnykh sred (Turbulence of Multicomponent Media), Moscow: Nauka, 1998.

  11. Kostiuk, T., Fast, K.E., Livengood, T.A., Hewagama, T., Goldstein, J.J., Espenak, F., and Buhl, D., Direct measurement of winds on Titan, Geophys. Res. Lett., 2001, vol. 28, no. 12, pp. 2361–2364.

    Article  ADS  Google Scholar 

  12. Kostiuk, T., Hewagama, T., Fast, K.E., Livengood, T.A., Annen, J., Buhl, D., Sonnabend, G., Schmulling, F., Delgado, J.D., and Achterberg, R., High spectral resolution infrared studies of Titan: Winds, temperature and composition, Planet. Space Sci., 2010, vol. 58, pp. 1715–1723. https://doi.org/10.1016/2010.08.004

    Article  ADS  Google Scholar 

  13. Kostiuk, T., Livengood, T., Hewagama, T., Sonnabend, G., Fast, K.E., Murakawa, K., Tokunaga, A.T., Annen, J., Buhl, D., and Schmulling, F., Titan’s stratospheric zonal wind, temperature and ethane abundance a year prior to Huygens insertion, Geophys. Res. Lett., 2005, vol. 32, no. L22 205. https://doi.org/10.1029/2005GL023897

  14. Lebonnois, S., Burgalat, J., Rannou, P., and Charnay, B., Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus, 2012, vol. 218, pp. 707–722. https://doi.org/10.1016/j.icarus.2011.11.032

    Article  ADS  Google Scholar 

  15. Livengood, T.A., Kostiuk, T., Sonnabend, G., Annen, J.N., Fast, K.E., Tokunaga, A., Murakawa, K., Hewagama, T., Schmulling, F., and Schieder, R., Stratospheric zonal winds on Titan at the time of Huygens decent, J. Geophys. Res.: Planets, 2006, vol. 111, art. ID E11S90. https://doi.org/10.1029/2005JE002669

    Article  ADS  Google Scholar 

  16. Lora, J.M., Lunine, J.I., and Russell, J.L., GCM simulations of Titan’s middle and lower atmosphere and comparison to observations, Icarus, 2015, vol. 250, pp. 367–377.

    Article  Google Scholar 

  17. Lorenz, R.D. Stiles, B.W., Aharonson, O., Lucas, A., Hayes, A.G., Kirk, R.L., Zebker, H.A., Turtle, E.P., Neish, C.D., Stofan, E.R., and Barnes, J.W., A global topographic map of Titan, Icarus, 2013, vol. 225, no. 1, pp. 516–528.

    Article  Google Scholar 

  18. Luz, D., Civeit, T., Courtin, T., Lebreton, J.-P., Gautier, D., Witasse, O., Kaufer, A., Ferr, F., Lara, L., Livengood, T., and Kostiuk, T., Characterization of zonal winds in the stratosphere of Titan with UVES. II. Observations coordinated with the Huygens probe entry, J. Geophys. Res.: Planets, 2006, vol. 111, art. ID E08S90. https://doi.org/10.1029/2005JE002617

    Article  Google Scholar 

  19. Mingalev, I.V. and Mingalev, V.S., General circulation model of the Earth lower and middle atmosphere under the given temperature distribution, Mat. Model., 2005, vol. 17, no. 5, pp. 24–40.

    MATH  Google Scholar 

  20. Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Kazeminejad, B., Lammer, H., Biernat, H.K., Lichtenegger, H.I.M., Schwingenschuh, K., and Rucker, H.O., First simulation results of Titan’s atmosphere dynamics with a global 3-D non-hydrostatic circulation model, Ann. Geophys., 2006, vol. 24, no. 8, pp. 2115–2129. https://doi.org/10.5194/angeo-24-2115-2006

    Article  ADS  Google Scholar 

  21. Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Kazeminejad, 7B., Lammer, H., Birnat, H.K., Lihteneger, H.I.M., Schvingenschu, K., and Ruker, H.O., Numerical simulation of circulation of the Titan’s atmosphere: interpretation of measurements of the Huygens probe, Cosm. Res., 2009, vol. 47, no. 2, pp. 114–125.

    Article  ADS  Google Scholar 

  22. Mingalev, V.S., Mingalev, I.V., Mingalev, O.V., Oparin, A.M., and Orlov, K.G., Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid, Comput. Math. Math. Phys., 2010, vol. 50, no. 5, pp. 877–889.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mingalev, I.V., Rodin, A.V., and Orlov, K.G., A nonhydrostatic model of the global circulation of the atmosphere of Venus, Sol. Syst. Res., 2012, vol. 46, no. 4, pp. 263–277.

    Article  ADS  Google Scholar 

  24. Mingalev, I.V., Rodin, A.V., and Orlov, K.G., Numerical simulations of the global circulation of the atmosphere of Venus: effects of surface relief and solar radiation heating, Sol. Syst. Res., 2015, vol. 49, no. 1, pp. 24–42.

    Article  ADS  Google Scholar 

  25. Moreno, R., Marten, A., and Hidayat, T., Interferometric measurements of zonal winds on Titan, Astron. Astrophys., 2005, vol. 437, pp. 319.

    Article  ADS  Google Scholar 

  26. Newmana, C.E., Lee, C., Lian, Y., Richardson, M.I., and Toigo, A.D., Stratospheric superrotation in the TitanWRF model, Icarus, 2011, vol. 213, pp. 636–654.

    Article  ADS  Google Scholar 

  27. Obukhov, A.M., Turbulentnost’ i dinamika atmosfery (Turbulence and Dynamics of Atmosphere), Leningrad: Gidrometeoizdat, 1988.

  28. Oparin, A.M., Numerical modeling of the problems related ti intensive development of hydrodynamic instabilities, in Novoe v chislennom modelirovanii: algoritmy, vychislitel’nyi eksperiment, rezul’taty (New in Numerical Modeling: Algorithms, Computational Experiment, and Results), Moscow: Nauka, 2000.

  29. Tokano, T., Wind-induced equatorial bulge in Venus and Titan general circulation models: Implication for the simulation of superrotation, Geophys. Res. Lett., 2013, vol. 40, pp. 4538–4543. https://doi.org/10.1002/grl.50841

    Article  ADS  Google Scholar 

  30. Tomasko, M.G., Archinal, B., Becker, T., Bezard, B., Bushroe, M., Combes, M., Cook, D., Coustenis, A., de Bergh, C., Dafoe, L.E., Doose, L., Doute, S., Eibl, A., Engel, S., Gliem, F., et al., Rain, winds and haze during the Huygens probe’s descent to Titan’s surface, Nature, 2005, vol. 438, pp. 765–778.

    Article  ADS  Google Scholar 

  31. Yelle, R.V., Lellowch, E., Gautier, D., and Strobel, D.F., The Yelle Titan atmosphere engineering models, Proc. ESA Conf. “Huygens: Science, Payload and Mission,” Paris: Eur. Space Agency, 1997, no. ESASP-1177, pp. 243–256.

Download references

Funding

The work of I.V. Mingalev and K.G. Orlov was supported by the Russian Foundation for Basic Research, project no. 17-01-00100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingalev, I.V., Rodin, A.V. & Orlov, K.G. Numerical Modeling of the General Circulation of the Atmosphere of Titan at Equinox. Sol Syst Res 53, 278–293 (2019). https://doi.org/10.1134/S0038094619040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619040051

Keywords:

Navigation