Skip to main content
Log in

Confirmation of the Sublimation Activity of the Primitive Main-Belt Asteroids 779 Nina, 704 Interamnia, and 145 Adeona, as well as its Probable Spectral Signs on 51 Nemausa and 65 Cybele

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

This paper presents the results that confirm the sublimation activity at the perihelion of the primitive main-belt asteroids 779 Nina, 704 Interamnia, and 145 Adeona; this activity was first discovered in September 2012 (Busarev et al., 2015; Busarev et al., 2016). The new spectrophotometric and/or UBVRI photometric observations of Nina, Interamnia, and Adeona were carried out in 2016–2018 during a regular perihelion passage of these asteroids. Additionally, probable spectral signs of weak sublimation activity were discovered on another two primitive main-belt asteroids, 51 Nemausa and 65 Cybele. In this study, we discuss the conditions for the occurrence of a periodic and/or continuous sublimation process on main-belt asteroids with low-temperature mineralogy; in particular, the conditions that are associated with their formation close to the “snow line” or beyond. We also consider general evolution processes that are able sustain a sufficiently high concentration of water ice close to the surface of the bodies in question and, therefore, their continuous sublimation activity, or lead to the recurrence of extinct activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bakhtin, A.I., Porodoobrazuyushchie silikaty: opticheskie spektry, kristallokhimiya, zakonomernosti okraski, tipomorfizm (Rock-Forming Silicates: Optical Spectra, Crystal Chemistry, Regularities of Coloring, and Typomorphism), Kazan: Kazan. Gos. Univ., 1985.

  2. Bell, J.F., Davis, D.R., Hartmann, W.K., and Gaffey, M.J., Asteroids: the big picture, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 98–127.

  3. Broglia, P. and Manara, A., Polarimetric observations of 51 Nemausa during its 1991 apparition, Astron. Astrophys., 1994, vol. 281, pp. 576–578.

    ADS  Google Scholar 

  4. Burns, R.G., Mineralogical Applications of Crystal Field Theory, New York: Cambridge Univ. Press, 1993.

    Book  Google Scholar 

  5. Bus, S.J. and Binzel, R.P., Phase II of the small Main-belt asteroid spectroscopic survey. A feature-based taxonomy, Icarus, 2002, vol. 158, pp. 146–177.

    Article  ADS  Google Scholar 

  6. Bus, S. and Binzel, R.P., 779 Nina CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003a, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 779_01_TAB.

  7. Bus, S. and Binzel, R.P., 704 Interamnia CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003b, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 704_01_TAB.

  8. Bus, S. and Binzel, R.P., 145 Adeona CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003c, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 145_01_TAB.

  9. Busarev, V.V., Spectrophotometry of atmosphereless celestial bodies of the solar system, Sol. Syst. Res., 1999, vol. 33, no. 2, pp. 120–129.

    ADS  Google Scholar 

  10. Busarev, V.V., Spektrofotometriya asteroidov i ee prilozheniya (Spectrophotometry of Asteroids and Its Application), Saarbrucken: LAP LAMBERT Academic, 2011.

  11. Busarev, V.V., A hypothesis on the origin of C-type asteroids and carbonaceous chondrites, Proc. Asteroids, Comets, Meteors Meeting (ACM2012), Niigata, Paris: Eur. Space Agency, 2012, no. 6017. https://arxiv.org/ftp/arxiv/papers/1211/1211.3042.pdf.

  12. Busarev, V.V., Barabanov, S.I., Rusakov, V.S., Puzin, V.B., and Kravtsov, V.V., Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples, Icarus, 2015, vol. 262, pp. 44–57.

    Article  ADS  Google Scholar 

  13. Busarev, V.V., Barabanov, S.I., and Puzin, V.B., Material composition assessment and discovering sublimation activity on asteroids 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira, Sol. Syst. Res., 2016, vol. 50, no. 4, pp. 281–293.

    Article  ADS  Google Scholar 

  14. Busarev, V.V., Makalkin, A.B., Vilas, F., Barabanov, S.I., and Scherbina, M.P., New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu, Icarus, 2018, vol. 304, pp. 83–94.

    Article  ADS  Google Scholar 

  15. Ciarniello, M., De Sanctis, M.C., Ammannito, E., et al., Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission, Astron. Astrophys., 2017, vol. 598, art. ID A130.

    Article  Google Scholar 

  16. Davidsson, B.J.R., Sierks, H., Guttler, C., et al., The primordial nucleus of comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 2016, vol. 592, art. ID A63.

    Article  Google Scholar 

  17. Dermott, S.F., Nicholson, P.D., Burns, J.A., and Houck, J.R., Origin of the Solar System dust bands discovered by IRAS, Nature, 1984, vol. 312, pp. 505–509.

    Article  ADS  Google Scholar 

  18. Dodd, R.T., Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge: Cambridge Univ. Press, 1981.

    Google Scholar 

  19. Durda, D.D. and Dermott, S.F., The collisional evolution of the Asteroid belt and its contribution to the zodiacal cloud, Icarus, 1997, vol. 130, pp. 140–164.

    Article  ADS  Google Scholar 

  20. Franco, L. and Pilcher, F., Light-curve inversion for 65 Cybele, Minor Planet Bull., 2015, no. 42, pp. 204–206.

  21. Gaffey, M.J., Bell, J.F., and Cruikshank, D.P., Reflectance spectroscopy and asteroid surface mineralogy, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 98–127.

  22. Galazutdinov, G.A., A system for processing stellar Echelle spectra. II. Spectra processing, Preprint of the Special Astrophysical Observatory, Russ. Acad. Sci., Nizhnij Arkhyz, 1992, no. 92, pp. 27–52.

  23. Gammelgaard, P., Significant color variation of (51) Nemausa, Proc. 30th Liège International Astrophysical Colloquium, Liège: Univ. Liège Press, 1992, pp. 311–313.

  24. Gopalswamy, N., Yashiro, S., Thakur, N., Mäkelä, P., Xie, H., and Akiyama, S., The 2012 July 23 backside eruption: An extreme energetic particle event? Astrophys. J., 2016, vol. 833, pp. 216–235.

    Article  ADS  Google Scholar 

  25. Grün, E., Agarwal, J., Altobelli, N., et al., The 19 Feb. 2016 outburst of Comet 67P/CG: An ESA Rosetta multi-instrument study, Mon. Not. R. Astron. Soc., 2016, vol. 462, suppl. 1, pp. S220–S234.

    Article  Google Scholar 

  26. Guilbert-Lepoutre, A., Besse, S., Mousis, O., Ali-Dib, M., Höfner, S., Koschny, D., and Hager, P., On the evolution of comets, Space Sci. Rev., 2015, vol. 197, pp. 271–296.

    Article  ADS  Google Scholar 

  27. Gumerov, R.I., Khamitov, I.M., and Pinigin, G.I., Use of PTT150 telescope in international projects to study the small bodies of the Solar System, Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 2013, vol. 155, no. 1, pp. 164–177.

    Google Scholar 

  28. Hansen, J.E. and Travis, L.D., Light scattering in planetary atmosphere, Space Sci. Rev., 1974, vol. 16, pp. 527–610.

    Article  ADS  Google Scholar 

  29. Hardorp, J., The Sun among the stars, Astron. Astrophys., 1980, vol. 91, pp. 221–232.

  30. Harris, A.W., Warner, B.D., and Pravec, P., Asteroid lightcurve derived data V13.0, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2012, no. EAR-A-5-DDR-DERIVED-b-V13.0.

  31. Huebner, W.F., Boice, D.C., Reitsema, H.J., Delamere, W.A., and Whipple, F.L., A model for intensity profiles of dust jets near the nucleus of Comet Halley, Icarus, 1988, vol. 76, pp. 78–88.

    Article  ADS  Google Scholar 

  32. Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, pp. 66–80.

    Article  ADS  Google Scholar 

  33. Kokhirova, G.I., Ivanova, O.V., Rakhmatullaeva, F.D., Khamroev, U.Kh., Buriev, A.M., and Abdulloev, S.Kh., Results of complex observations of asteroid (596) Scheila at the Sanglokh International Astronomical Observatory, Sol. Syst. Res., 2018, vol. 52, no. 6, pp. 495–504.

    Article  ADS  Google Scholar 

  34. Kristensen, L.K., The pole of (51) Nemausa, Astron. Nachr., 1993, vol. 314, pp. 381–390.

    Article  ADS  Google Scholar 

  35. Lewis, J.S., The temperature gradient in the solar nebula, Science, 1974, vol. 186, pp. 440–442.

    Article  ADS  Google Scholar 

  36. Licandro, J., Campins, H., Kelley, M., Hargrove, K., Pinilla-Alonso, N., Cruikshank, D., Rivkin, A.S., and Emery, J., (65) Cybele: detection of small silicate grains, water-ice, and organics, Astron. Astrophys., 2011, vol. 525, art. ID A34.

    Article  ADS  Google Scholar 

  37. Liou, J.-Ch., Zook, H.A., and Jackson, A.A., Radiation pressure, Poynting–Robertson drag, and solar wind drag in the restricted three-body problem, Icarus, 1995, vol. 116, pp. 186–201.

    Article  ADS  Google Scholar 

  38. Longhi, J., Phase equilibria in the system CO2–H2O. I. New equilibrium relations at low temperatures, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 529–539.

    Article  ADS  Google Scholar 

  39. Makalkin, A.B. and Dorofeeva, V.A., Temperature distribution in the solar nebula at successive stages of its evolution, Sol. Syst. Res., 2009, vol. 43, no. 6, pp. 508–532.

    Article  ADS  Google Scholar 

  40. Masiero, J.R., Grav, T., Mainzer, A.K., Nugent, C.R., Bauer, J.M., Stevenson, R., and Sonnett, S., Main-belt asteroids with WISE/NEOWISE: near-infrared Albedos, Astrophys. J., 2014, vol. 791, art. ID 121.

    Article  ADS  Google Scholar 

  41. Müller, T.G. and Blommaert, J.A.D.L., 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis, Astron. Astrophys., 2004, vol. 418, pp. 347–356.

    Article  ADS  Google Scholar 

  42. Nesvorný, D., Vokrouhlický, D., Bottke, W.F., and Sykes, M., Physical properties of asteroid dust bands and their sources, Icarus, 2006, vol. 181, pp. 107–144.

    Article  ADS  Google Scholar 

  43. Platonov, A.N., Priroda okraski mineralov (Nature of Color of Minerals), Kiev: Naukova Dumka, 1976.

  44. Reynolds, C.M., Reddy, V., and Gaffey, M.J., Compositional study of 51 Nemausa: a possible carbonaceous chondrite-like asteroid, Proc. 40th Lunar and Planetary Science Conf., Woodlands, 2009, no. 1285.

  45. Safronov, V.S. and Ziglina, I.N., Origin of the asteroid belt, Sol. Syst. Res., 1991, vol. 25, no. 2, pp. 139–146.

    ADS  Google Scholar 

  46. Shepard, M.K., et al., A radar survey of M- and X-class asteroids. II. Summary and synthesis, Icarus, 2010, vol. 208, pp. 221–237.

    Article  ADS  Google Scholar 

  47. Skorov, Yu.V., Rezac, L., Hartogh, P., Bazilevsky, A.T., and Keller, H.U., A model of short-lived outbursts on the 67P from fractured terrains, Astron. Astrophys., 2016, vol. 593, art. ID A76.

    Article  ADS  Google Scholar 

  48. Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., IRAS Minor planet survey, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2004, no. IRAS-A-FPA-3-RDR-IMPS-V6.0.

  49. Tholen, D.J., Asteroid taxonomic classifications, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 1139–1150.

  50. Warner, B.D., Harris, A.W., and Pravec, P., The asteroid light-curve database, Icarus, 2009, vol. 202, pp. 134–146.

    Article  ADS  Google Scholar 

  51. Werner, B., A modest success story: 779 Nina brighter than predicted, Minor Planet Bull., 1991, vol. 18, p. 16.

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments, which allowed us to considerably improve the description and interpretation of the results.

Funding

The study is funded by the Russian Foundation for Basic Research (project no. 18-02-00105 A). I. Kh., I. B., R. G., E. I., and S. M. would like to thank TÜBİTAK, KFU, AS RT, and SRI for partial support in the use of the RTT150 (Russian–Turkish 1.5-m telescope in Antalya). The study was also funded in part by the subsidy 3.6714.2017/8.9 granted to the Kazan Federal University for performing the state task in the field of scientific activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Busarev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busarev, V.V., Shcherbina, M.P., Barabanov, S.I. et al. Confirmation of the Sublimation Activity of the Primitive Main-Belt Asteroids 779 Nina, 704 Interamnia, and 145 Adeona, as well as its Probable Spectral Signs on 51 Nemausa and 65 Cybele. Sol Syst Res 53, 261–277 (2019). https://doi.org/10.1134/S0038094619040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619040014

Keywords:

Navigation