Abstract
Numerical modeling results of interactions of the planetary atmosphere of Gliese 436b with ionizing radiation and the plasma wind of an M star are presented. A self-consistent gas-dynamic 2D model characterizing the processes of radiation heating and ionization and hydrogen photochemistry reactions was used in the modeling. It is demonstrated that Gliese 436b should have an extended (several tens of planetary radii) exosphere, which is formed by partially ionized gas with added molecular components, with a supersonic outflow velocity. The influence of such factors as the XUV radiation intensity and the temperature of the lower atmosphere on the mass loss rate is examined.
This is a preview of subscription content, access via your institution.
References
Bourrier, V. and Lecavelier des Etangs, A., 3D model of hydrogen atmospheric escape from HD209458b and HD 189733b: radiative blow-out and stellar wind interactions, Astron. Astrophys., 2013, vol. 557, p. A124.
Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y.A., and Vidotto, A.A., An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b, Astron. Astrophys., 2016, vol. 591, p. A121.
Ehrenreich, D., Bourrier, V., Wheatley, P.J., Des Etangs, A.L., Hébrard, G., Udry, S., Bonfils, X., Delfosse, X., Désert, J.M., Sing, D.K, and Vidal-Madjar, A., A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436 b, Nature, 2015, vol. 522, pp. 459–461.
Erkaev, N.V., Kulikov, Y.N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G.F., and Biernat, H.K., Roche lobe effects on the atmospheric loss from “Hot Jupiters,” Astron. Astrophys., 2007, vol. 472, no. 1, pp. 329–334.
Khodachenko, M.L., Ribas, I., Lammer, H., Grießmeier, J.M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H.K., Farrugia, C.J., and Rucker, H.O., Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exo-planets. II. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones, Astrobiology, 2007, vol. 7, no. 1, pp. 167–184.
Khodachenko, M.L., Shaikhislamov, I.F., Lammer, H., and Prokopov, P.A., Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; structuring of inner magnetosphere, Astrophys. J., 2015, vol. 813, no. 1, pp. 50–67.
Koskinen, T.T., Yelle, R.V., Lavvas, P., and Lewis, N.K., Characterizing the thermosphere of HD209458b with UV transit observations, Astrophys. J., 2010, vol. 723, no. 1, pp. 116–128.
Koskinen, T.T., Harris, M.J., Yelle, R.V., and Lavvas, P., The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere, Icarus, 2013, vol. 226, no. 2, pp. 1678–1694.
Kulow, J.R., France, K., Linsky, J., and Loyd, R.O.P., Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436 b, Astrophys. J., 2014, vol. 786, pp. 132–140.
Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., and Weiss, W.W., Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating, Astrophys. J. Lett., 2003, vol. 598, no. 2, pp. 121–124.
Lavie, B., Ehrenreich, D., Bourrier, V., Lecavelier des Etangs, A., Vidal-Madjar, A., Delfosse, X., Garcia Berna, A., Heng, K., Thomas, N., Udry, S., and Wheatley, P.J., The long egress of GJ 436b’s giant exo-sphere, Astron. Astrophys., 2017, vol. 605, p. L7.
Lecavelier des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G.E., Désert, J.-M., Ferlet, R., Hebrard, G., Sing, D.K., Tchakoumegni, K.-O., and Udry, S., Evaporation of the planet HD 189733b observed in H I Lyman-α, Astron. Astrophys., 2010, vol. 514, p. A72.
Line, M.R., Knutson, H., Wolf, A.S., and Yung, Y.L., A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios, Astrophys. J., 2014, vol. 783, no. 2, pp. 70–82.
Lopez, E.D., Fortney, J. J., and Miller, N., How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond, Astrophys. J., 2012, vol. 761, no. 1, pp. 59–71.
Loyd, R.P., Koskinen, T.T., France, K., Schneider, C., and Redfield, S., Ultraviolet C II and Si III transit spectros-copy and modeling of the evaporating atmosphere of GJ436b, Astrophys. J. Lett., 2017, vol. 834, no. 2, p. L17.
Maness, H.L., Marcy, G.W., Ford, E.B., and Hauschildt, P.H., The M dwarf GJ 436 and its Neptune-mass planet, Publ. Astron. Soc. Pac., 2007, vol. 119, no. 851, pp. 90–101.
Murray-Clay, R.A., Chiang, E.I., and Murray, N., Atmospheric escape from hot Jupiters, Astrophys. J., 2009, vol. 693, no. 1, pp. 23–42.
Nettelmann, N., Kramm, U., Redmer, R., and Neuhäuser, R., Interior structure models of GJ436 b, Astron. Astrophys., 2010, vol. 523, p. A26.
Owen, J.E. and Wu, Y., Kepler planets: a tale of evaporation, Astrophys. J., 2013, vol. 775, no. 2, p. 105.
Panagia, N. and Felli, M., The spectrum of the free-free radiation from extended envelopes, Astron. Astrophys., 1975, vol. 39, pp. 1–5.
Penz, T. and Micela, G., X-ray induced mass loss effects on exoplanets orbiting dM stars, Astron. Astrophys., 2008, vol. 479, no. 2, pp. 579–584.
Shaikhislamov, I.F., Khodachenko, M.L., Sasunov, Y.L., Lammer, H., Kislyakova, K.G., and Erkaev, N.V., Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material, Astrophys. J., 2014, vol. 795, no. 2, pp. 132–147.
Shaikhislamov, I.F., Khodachenko, M.L., Lammer, H., Kislyakova, K.G., Fossati, L., Johnstone, C.P., Prokopov, P.A., Berezutsky, A.G., Zakharov, Yu.P., and Posukh, V.G., Two regimes of interaction of a Hot Jupiter’s escaping atmosphere with the stellar wind and generation of energized atomic hydrogen corona, Astrophys. J., 2016, vol. 832, no. 2, pp. 173–193.
Vidal-Madjar A., Désert, J.-M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G.E., Ehrenreich, D., Ferlet, R., McConnell, J.C., Mayor, M., and Parkinson, C.D., Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b, Astrophys. J. Lett., 2004, vol. 604, no. 1, p. L69.
Vidotto, A.A. and Bourrier, V., Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436, Mon. Not. R. Astron. Soc., 2017, vol. 470, no. 4, pp. 4026–4033.
Wargelin, B.J. and Drake, J.J., Stringent X-ray constraints on mass loss from Proxima Centauri, Astrophys. J., 2002, vol. 578, no. 1, pp. 503–514.
Wood, B.E., Astrospheres and solar-like stellar winds, Living Rev. Sol. Phys., 2004, vol. 1, no. 1, p. 2.
Yelle, R.V., Aeronomy of extra-solar giant planets at small orbital distances, Icarus, 2004, vol. 170, no. 1, pp. 167–179.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berezutsky, A.G., Shaikhislamov, I.F., Miroshnichenko, I.B. et al. Interaction of the Expanding Atmosphere with the Stellar Wind around Gliese 436b. Sol Syst Res 53, 138–145 (2019). https://doi.org/10.1134/S0038094619020011
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0038094619020011
Keywords
- exoplanets
- planetary atmosphere
- aeronomy
- stellar wind
- numerical modeling