Skip to main content

Interaction of the Expanding Atmosphere with the Stellar Wind around Gliese 436b

Abstract

Numerical modeling results of interactions of the planetary atmosphere of Gliese 436b with ionizing radiation and the plasma wind of an M star are presented. A self-consistent gas-dynamic 2D model characterizing the processes of radiation heating and ionization and hydrogen photochemistry reactions was used in the modeling. It is demonstrated that Gliese 436b should have an extended (several tens of planetary radii) exosphere, which is formed by partially ionized gas with added molecular components, with a supersonic outflow velocity. The influence of such factors as the XUV radiation intensity and the temperature of the lower atmosphere on the mass loss rate is examined.

This is a preview of subscription content, access via your institution.

References

  1. Bourrier, V. and Lecavelier des Etangs, A., 3D model of hydrogen atmospheric escape from HD209458b and HD 189733b: radiative blow-out and stellar wind interactions, Astron. Astrophys., 2013, vol. 557, p. A124.

    ADS  Article  Google Scholar 

  2. Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y.A., and Vidotto, A.A., An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b, Astron. Astrophys., 2016, vol. 591, p. A121.

    ADS  Article  Google Scholar 

  3. Ehrenreich, D., Bourrier, V., Wheatley, P.J., Des Etangs, A.L., Hébrard, G., Udry, S., Bonfils, X., Delfosse, X., Désert, J.M., Sing, D.K, and Vidal-Madjar, A., A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436 b, Nature, 2015, vol. 522, pp. 459–461.

    ADS  Article  Google Scholar 

  4. Erkaev, N.V., Kulikov, Y.N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G.F., and Biernat, H.K., Roche lobe effects on the atmospheric loss from “Hot Jupiters,” Astron. Astrophys., 2007, vol. 472, no. 1, pp. 329–334.

    ADS  Article  Google Scholar 

  5. Khodachenko, M.L., Ribas, I., Lammer, H., Grießmeier, J.M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H.K., Farrugia, C.J., and Rucker, H.O., Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exo-planets. II. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones, Astrobiology, 2007, vol. 7, no. 1, pp. 167–184.

    ADS  Article  Google Scholar 

  6. Khodachenko, M.L., Shaikhislamov, I.F., Lammer, H., and Prokopov, P.A., Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; structuring of inner magnetosphere, Astrophys. J., 2015, vol. 813, no. 1, pp. 50–67.

    ADS  Article  Google Scholar 

  7. Koskinen, T.T., Yelle, R.V., Lavvas, P., and Lewis, N.K., Characterizing the thermosphere of HD209458b with UV transit observations, Astrophys. J., 2010, vol. 723, no. 1, pp. 116–128.

    ADS  Article  Google Scholar 

  8. Koskinen, T.T., Harris, M.J., Yelle, R.V., and Lavvas, P., The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere, Icarus, 2013, vol. 226, no. 2, pp. 1678–1694.

    ADS  Article  Google Scholar 

  9. Kulow, J.R., France, K., Linsky, J., and Loyd, R.O.P., Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436 b, Astrophys. J., 2014, vol. 786, pp. 132–140.

    ADS  Article  Google Scholar 

  10. Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., and Weiss, W.W., Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating, Astrophys. J. Lett., 2003, vol. 598, no. 2, pp. 121–124.

    ADS  Article  Google Scholar 

  11. Lavie, B., Ehrenreich, D., Bourrier, V., Lecavelier des Etangs, A., Vidal-Madjar, A., Delfosse, X., Garcia Berna, A., Heng, K., Thomas, N., Udry, S., and Wheatley, P.J., The long egress of GJ 436b’s giant exo-sphere, Astron. Astrophys., 2017, vol. 605, p. L7.

    ADS  Article  Google Scholar 

  12. Lecavelier des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G.E., Désert, J.-M., Ferlet, R., Hebrard, G., Sing, D.K., Tchakoumegni, K.-O., and Udry, S., Evaporation of the planet HD 189733b observed in H I Lyman-α, Astron. Astrophys., 2010, vol. 514, p. A72.

    Article  Google Scholar 

  13. Line, M.R., Knutson, H., Wolf, A.S., and Yung, Y.L., A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios, Astrophys. J., 2014, vol. 783, no. 2, pp. 70–82.

    ADS  Article  Google Scholar 

  14. Lopez, E.D., Fortney, J. J., and Miller, N., How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond, Astrophys. J., 2012, vol. 761, no. 1, pp. 59–71.

    ADS  Article  Google Scholar 

  15. Loyd, R.P., Koskinen, T.T., France, K., Schneider, C., and Redfield, S., Ultraviolet C II and Si III transit spectros-copy and modeling of the evaporating atmosphere of GJ436b, Astrophys. J. Lett., 2017, vol. 834, no. 2, p. L17.

    ADS  Article  Google Scholar 

  16. Maness, H.L., Marcy, G.W., Ford, E.B., and Hauschildt, P.H., The M dwarf GJ 436 and its Neptune-mass planet, Publ. Astron. Soc. Pac., 2007, vol. 119, no. 851, pp. 90–101.

    ADS  Article  Google Scholar 

  17. Murray-Clay, R.A., Chiang, E.I., and Murray, N., Atmospheric escape from hot Jupiters, Astrophys. J., 2009, vol. 693, no. 1, pp. 23–42.

    ADS  Article  Google Scholar 

  18. Nettelmann, N., Kramm, U., Redmer, R., and Neuhäuser, R., Interior structure models of GJ436 b, Astron. Astrophys., 2010, vol. 523, p. A26.

    ADS  Article  Google Scholar 

  19. Owen, J.E. and Wu, Y., Kepler planets: a tale of evaporation, Astrophys. J., 2013, vol. 775, no. 2, p. 105.

    ADS  Article  Google Scholar 

  20. Panagia, N. and Felli, M., The spectrum of the free-free radiation from extended envelopes, Astron. Astrophys., 1975, vol. 39, pp. 1–5.

    ADS  Google Scholar 

  21. Penz, T. and Micela, G., X-ray induced mass loss effects on exoplanets orbiting dM stars, Astron. Astrophys., 2008, vol. 479, no. 2, pp. 579–584.

    ADS  Article  Google Scholar 

  22. Shaikhislamov, I.F., Khodachenko, M.L., Sasunov, Y.L., Lammer, H., Kislyakova, K.G., and Erkaev, N.V., Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material, Astrophys. J., 2014, vol. 795, no. 2, pp. 132–147.

    ADS  Article  Google Scholar 

  23. Shaikhislamov, I.F., Khodachenko, M.L., Lammer, H., Kislyakova, K.G., Fossati, L., Johnstone, C.P., Prokopov, P.A., Berezutsky, A.G., Zakharov, Yu.P., and Posukh, V.G., Two regimes of interaction of a Hot Jupiter’s escaping atmosphere with the stellar wind and generation of energized atomic hydrogen corona, Astrophys. J., 2016, vol. 832, no. 2, pp. 173–193.

    ADS  Article  Google Scholar 

  24. Vidal-Madjar A., Désert, J.-M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G.E., Ehrenreich, D., Ferlet, R., McConnell, J.C., Mayor, M., and Parkinson, C.D., Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b, Astrophys. J. Lett., 2004, vol. 604, no. 1, p. L69.

    ADS  Article  Google Scholar 

  25. Vidotto, A.A. and Bourrier, V., Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436, Mon. Not. R. Astron. Soc., 2017, vol. 470, no. 4, pp. 4026–4033.

    ADS  Article  Google Scholar 

  26. Wargelin, B.J. and Drake, J.J., Stringent X-ray constraints on mass loss from Proxima Centauri, Astrophys. J., 2002, vol. 578, no. 1, pp. 503–514.

    ADS  Article  Google Scholar 

  27. Wood, B.E., Astrospheres and solar-like stellar winds, Living Rev. Sol. Phys., 2004, vol. 1, no. 1, p. 2.

    ADS  Google Scholar 

  28. Yelle, R.V., Aeronomy of extra-solar giant planets at small orbital distances, Icarus, 2004, vol. 170, no. 1, pp. 167–179.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Berezutsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berezutsky, A.G., Shaikhislamov, I.F., Miroshnichenko, I.B. et al. Interaction of the Expanding Atmosphere with the Stellar Wind around Gliese 436b. Sol Syst Res 53, 138–145 (2019). https://doi.org/10.1134/S0038094619020011

Download citation

Keywords

  • exoplanets
  • planetary atmosphere
  • aeronomy
  • stellar wind
  • numerical modeling