Skip to main content

The Distribution of Giant Exoplanets over True and Projective Masses: Accounting for Observational Selection

Abstract

To build the mass distribution of exoplanets discovered with the method of measuring the radial velocities, it is necessary to take into consideration the observational selection factors. We propose the detectability-window method to form homogeneous series of exoplanets. In addition, the errors in determining the masses are taken into account. The mass distributions of the transiting planets and the planets discovered with the radial-velocity method are compared in a range of 0.5 to 13 Jupiter masses.

This is a preview of subscription content, access via your institution.

References

  1. Ananjeva, V., Venkstern, A., Tavrov, A., and Bertaux, J.-L., Retrieving the true mass distribution of exoplanets detected with the Radial velocity method: Removing the effect of observing selection, Proc. Eighth Moscow Solar System Symp. (8M-S 3 ), Moscow, Russia, October, 9–13, 2017, Moscow: Inst. Kosm. Issled., Ross. Akad. Nauk, 2017, no. 8MS3-EP-04.

    Google Scholar 

  2. Astudillo-Defru, N., Diaz, R.F., Bonfils, X., Almenara, J.M., Delisle, J.-B., Bouchy, F., Delfosse, X., Forveille, T., Lovis, C., Mayor, M., Murgas, F., Pepe, F., Santos, N.C., Ségransan, D., Udry, S., and Wünsche A., The HARPS search for southern extra-solar planets, XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti, Astron. Astrophys., 2017, vol. 605, no. L11. https://doi.org/10.1051/0004-6361/201731581.

  3. Bertaux, J.-L., Tavrov, A., and Ananjeva, V., Retrieving the true mass distribution of exoplanets detected with the Radial velocity method: method and first results, Proc. Eighth Moscow Solar System Symp. (8M-S 3 ), Moscow, Russia, October, 9–13, 2017, Moscow: Inst. Kosm. Issled., Ross. Akad. Nauk, 2017, no. 8MS3-EP-03.

    Google Scholar 

  4. Bisikalo, D.V., Kaigorodov, P.V., Ionov, D.E., and Shematovich, V.I., Types of gaseous envelopes of “hot Jupiter” exoplanets, Astron. Rep., 2013, vol. 57, no. 10, pp. 715–725.

    ADS  Article  Google Scholar 

  5. Burgasser, A.J., Brown dwarfs: failed stars, super Jupiters, Phys. Today, 2008, vol. 61, no. 6, pp. 70–71.

    Article  Google Scholar 

  6. Butler, R.P., Marcy, G.W., Vogt, S.S., Fischer, D.A., Henry, G.W., Laughlin, G., and Wright, J.T., Seven new Keck planets orbiting G and K dwarfs, Astrophys. J., 2003, vol. 582, no. 1, pp. 455–466.

    ADS  Article  Google Scholar 

  7. Butler, R.P., Wright, J.T., Marcy, G.W., Fischer, D.A., Vogt, S.S., Tinney, C.G., Jones, H.R.A., Carter, B.D., Johnson, J.A., McCarthy, C., and Penny, A.J., Catalog of nearby exoplanets, Astrophys. J., 2006, vol. 646, no. 1, pp. 505–522.

    ADS  Article  Google Scholar 

  8. Chandrasekhar, S. and Munch, G., On the integral equation governing the distribution of the true and the apparent rotation velocities of stars, Astrophys. J., 1950, vol. 111, pp. 142–156.

    ADS  MathSciNet  Article  Google Scholar 

  9. Döllinger, M.P., Hatzes, A.P., Pasquini, L., Guenther, E.W., and Hartmann, M., Planetary companions around the K giant stars 11 UMi and HD 32518, Astron. Astrophys., 2009, vol. 505, no. 3, pp. 1311–1317. https://doi.org/10.1051/0004-6361/200911702.

    ADS  Article  Google Scholar 

  10. Endl, M., Robertson, P., Cochran, W.D., MacQueen, Ph.J., Brugamyer, E. J., Caldwell, C., Wittenmyer, R.A., Barnes, S.I., and Gullikson, K., Revisiting ρ1 Cancri e: A new mass determination of the transiting super-Earth, Asrtophys. J., 2012, vol. 759, no. 1, pp. 1–7.

    Article  Google Scholar 

  11. Hellier, C., Anderson, D.R., Collier Cameron, A., Gillon, M., Hebb, L., Maxted, P.F.L., Queloz, D., Smalley, B., Triaud, A.H.M.J., West, R.G., Wilson, D.M., Bentley, S.J., Enoch, B., Horne, K., Irwin, J., et al., An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b, Nature, 2009, vol. 460, no. 7259, pp. 1098–1100. doi https://doi.org/10.1038/nature08245

    ADS  Article  Google Scholar 

  12. Howard, A.W., Observed properties of extrasolar planets, Science, 2013, vol. 340, pp. 572–576.

    ADS  Article  Google Scholar 

  13. Jorissen, A., Mayor, M., and Udry, S., The distribution of exoplanet masses, Astron. Astrophys., 2001, vol. 379, no. 3, pp. 992–998. https://doi.org/10.1051/0004-6361:20011373.

    ADS  Article  Google Scholar 

  14. Lee, B.-C., Han, I., and Park, M.-G., Planetary companions orbiting M giants HD 208527 and HD 220074, Astron. Astrophys., 2013, vol. 549, no. 2.

  15. Lee, B.-C., Park, M.-G., Lee, S.-M., Jeong, G., Oh, H.-I., Han, I., Lee, J.W., Lee, C.-U., Kim, S.-L., and Kim, K.-M., Search for exoplanet around northern circumpolar stars-Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris, Astron. Astrophys., 2015, vol. 584. A79. https://doi.org/10.1051/0004-6361/201527076.

    Article  Google Scholar 

  16. Mayor, M. and Queloz, D., A Jupiter-mass companion to a solar-type star, Nature, 1995, vol. 378, no. 6555, pp. 355–359.

    ADS  Article  Google Scholar 

  17. McArthur, B.E., Endl, M., Cochran, W.D., Benedict, G.F., Fischer, D.A., Marcy, G.W., Butler, R.P., Naef, D., Mayor, M., and Queloz, D., Detection of a Neptunemass planet in the ρ1 Cancri System using the Hobby-Eberly telescope, Astrophys. J., 2004, vol. 614, no. 1, pp. L81–L84.

    ADS  Article  Google Scholar 

  18. Montmerle, T., Ehrenreich, D., Lagrange, A.-M., Eggenberger, A., and Udry, S., Detection and characterization of extrasolar planets through Doppler spectroscopy, Eur. Astron. Soc. Publ. Ser., 2010, vol. 41, pp. 27–25.

    Google Scholar 

  19. Parviainen, H., Gandolfi, D., Deleuil, M., Moutou, C., Deeg, H.J., Ferraz-Mello, S., Samuel, B., Csizmadia, Sz., Pasternacki, T., Wuchterl, G., Havel, M., Fridlund, M., Angus, R., Tingley, B., Grziwa, S., et al., Transiting exoplanets from the CoRoT space mission, XXV. CoRoT-27b: a massive and dense planet on a short-period orbit, Astron. Astrophys., 2014, vol. 562, no. A140. https://doi.org/10.1051/0004-6361/201323049.

  20. Perryman, M., The Exoplanet Handbook, Cambridge: Cambridge Univ. Press, 2011, pp. 103–148.

    Book  Google Scholar 

  21. Sahu, K.C., Casertano, S., Valenti, J., Bond, H.E., Brown, T.M., Smith, T.E., Clarkson, W., Minniti, D., Zoccali, M., Livio, M., Renzini, A., Rich, R.M., Panagia, N., Lubow, S., Brown, T., and Piskunov, N., Transiting planets in the galactic bulge from SWEEPS survey and implications, Proc. Int. Astron. Union, 2008, vol. 4, no. 253, pp. 45–53. https://doi.org/10.1017/S1743921308026227.

    Article  Google Scholar 

  22. Sanchis-Ojeda, R., Fabrycky, D.C., Winn, J.N., Barclay, T., Clarke, B.D., Ford, E.B., Fortney, J.J., Geary, J.C., Holman, M.J., Howard, A.W., Jenkins, J.M., Koch, D., Lissauer, J.J., Marcy, G.W., Mullally F., et al., Alignment of the stellar spin with the orbits of a three-planet system, Nature, 2012, vol. 487, no. 7408, pp. 449–453. doi https://doi.org/10.1038/nature11301

    ADS  Article  Google Scholar 

  23. Seager, S., Kuchner, M., Hier-Majumder, C.A., and Militzer, B., Mass-radius relationships for solid exoplanets, Astrophys. J., 2007, vol. 669, no. 2, pp. 1279–1297.

    ADS  Article  Google Scholar 

  24. The NASA exoplanet archive. https://exoplanetarchive.ipac.caltech.edu/. Accessed October 17, 2017.

  25. Tikhonov, A.N., Nonlinear Ill-Posed Problems, Dordrecht: Springer-Verlag, 1998.

    Book  Google Scholar 

  26. Winn, J.N., Exoplanet transits and occultations, in Exoplanets, Seager, S., Ed., Tucson, AZ: Univ. of Arizona Press, 2010. https://arxiv.org/abs/1001.2010.

    Google Scholar 

  27. Winn, J.N., Holman, M.J., Torres, G., McCullough, P., Johns-Krull, C., Latham, D.W., Shporer, A., Mazeh, T., Garcia-Melendo, E., Foote, C., Esquerdo, G., and Everett, M., The transit light curve project. IX. Evidence for a smaller radius of the exoplanet XO-3b, Astrophys. J., 2008, vol. 683, no. 2, pp. 1076–1084.

    ADS  Article  Google Scholar 

  28. Xie, J.-W., Transit timing variation of near-resonance planetary pairs. II. Confirmation of 30 planets in 15 multiple planet systems, Astrophys. J., Suppl. Ser., 2014, vol. 210, no. 2. https://doi.org/10.1088/0067-0049/210/2/25.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Ananyeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ananyeva, V.I., Tavrov, A.V., Venkstern, A.A. et al. The Distribution of Giant Exoplanets over True and Projective Masses: Accounting for Observational Selection. Sol Syst Res 53, 124–137 (2019). https://doi.org/10.1134/S0038094619010027

Download citation

Keywords

  • exoplanets
  • projective mass
  • mass distribution
  • observational selection
  • detectability-window method
  • radial-velocity method
  • transit method