Skip to main content
Log in

Delivery of Water and Volatiles to the Terrestrial Planets and the Moon

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiter’s orbit could be comparable to the mass of terrestrial oceans. A considerable portion of the water could have been delivered to the Earth’s embryo, when its mass was smaller than the current mass of the Earth. While the Earth’s embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiter’s orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two−three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiter’s orbit could be less than that for the Earth by a factor not more than 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Canup, R.M. and Pierazzo, E., Retention of water during planet-scale collisions, Proc. 37th Lunar and Planetary Sci. Conf., League City, TX, 2006, abs. #2146.

    Google Scholar 

  • Chassefière, E., Wieler, R., Marty, B., and Leblanc, F., The evolution of Venus: present state of knowledge and future exploration, Planet. Space Sci., 2012, vol. 63–64, pp. 15–23.

    Article  Google Scholar 

  • Clanton, C. and Gaudi, B.S., Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results, Astrophys. J., 2017, vol. 834, art. ID A46, 13 p.

  • Davidsson, B.J.R., Sierks, H., Güttler, C., Marzari, F., Pajola, M., Rickman, H., A’Hearn, M.F., Auger, A.-T., El-Maarry, M.R., Fornasier, S., Gutierrez, P.J., Keller, H.U., Massironi, M., Snodgrass, C., Vincent, J.-B., and 33 co-authors, The primordial nucleus of comet 67P/Churyumov-Gerasimenko, Astron. Astrophys., 2016, vol. 592, art. ID A63, 30 p.

  • Delsemme, A.H., The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater, Planet. Space Sci., 1999, vol. 47, pp. 125–131.

    Article  ADS  Google Scholar 

  • Drake, M. and Campins, H., Origin of water on the terrestrial planets, Proc. 229th IAU Symp. “Asteroids, Comets, and Meteors”, 2006, pp. 381–394.

    Google Scholar 

  • Fulle, M., Della Corte, V., Rotundi, A., Green, S.F., Accolla, M., Colangeli, L., Ferrari, M., Ivanovski, S., Sordini, R., and Zakharov, V., The dust-to-ice ratio in comets and Kuiper belt objects, Mon. Notic. Roy. Astron. Soc., 2017, vol. 469, pp. S45–S49.

    Article  Google Scholar 

  • Genda, H. and Icoma, M., Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere, Icarus, 2008, vol. 194, no. 1, pp. 42–52.

    Article  ADS  Google Scholar 

  • Greenberg, J.M., Making a comet nucleus, Astron. Astrophys., 1998, vol. 330, pp. 375–380.

    ADS  Google Scholar 

  • Hahn, J.M. and Malhotra, M., Orbital evolution of planets embedded in a planetesimal disk, Astron. J., 1999, vol. 117, pp. 3041–3053.

    Article  ADS  Google Scholar 

  • Hallis, L.J., Huss, G.R., Nagashima, K., Taylor, G.J., Halldórsson, S.A., Hilton, D.R., Mottl, M.J., and Meech, K.J., Evidence for primordial water in Earth’s deep mantle, Science, 2015, vol. 350, pp. 795–797.

    Article  ADS  Google Scholar 

  • Ipatov, S.I., Migration of bodies in the accretion of planets, Sol. Syst. Res., 1993, vol. 27, no. 1, pp. 65–79.

    ADS  MathSciNet  Google Scholar 

  • Ipatov, S.I., Migratsiya nebesnykh tel v Solnechnoi sisteme (Celestial Bodies’ Migration in Solar System), Moscow: URSS, 2000. 320 p. http://www.rfbr.ru/rffi/ru/books/o_29239, http://booksee.org/book/1472075.

    Google Scholar 

  • Ipatov, S.I., Collision probabilities of migrating small bodies and dust particles with planets, Proc. Int. Astron. Union, Symp. S263. “Icy Bodies in the Solar System” (Rio de Janeiro, Brazil, Aug. 3–7, 2009), Fernandez, J.A., Lazzaro, D., Prialnik, D., and Schulz, R., Eds., Cambridge Univ. Press, 2010, pp. 41–44. http://arxiv.org/abs/0910.3017.

    Google Scholar 

  • Ipatov, S.I. and Mather, J.C., Comet and asteroid hazard to the terrestrial planets, Adv. Space Res., 2004, vol. 33, no. 9, pp. 1524–1533. http://arXiv.org/format/astro-ph/0212177.

    Article  ADS  Google Scholar 

  • Ipatov, S.I. and Mather, J.C., Migration of small bodies and dust to near-Earth space, Adv. Space Res., 2006, vol. 37, no. 1, pp. 126–137. http://arXiv.org/format/astro-ph/0411004.

    Article  ADS  Google Scholar 

  • Ipatov, S.I. and Mather, J.C., Migration of comets to the terrestrial planets, in Proc. IAU Symp. no. 236 “Near- Earth Objects, Our Celestial Neighbors: Opportunity and Risk” (Aug. 14–18, 2006, Prague, Czech Republic), Milani, A., Valsecchi, G.B., and Vokrouhlický, D., Eds., Cambridge: Cambridge Univ. Press, 2007, pp. 55–64. http://arXiv.org/format/astro-ph/0609721.

    Google Scholar 

  • Kasting, J.F., Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus, 1988, vol. 74, pp. 472–494.

    Article  ADS  Google Scholar 

  • Levison, H.F. and Duncan, M.J., The long-term dynamical behavior of short-period comets, Icarus, 1994, vol. 108, no. 1, pp. 18–36.

    Article  ADS  Google Scholar 

  • Levison, H.F., Dones, L., Chapman, C.R., Stern, S.A., Duncan, M.J., and Zahnle, K., Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune?, Icarus, 2001, vol. 151, pp. 286–306.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Chambers, J., Morbidelli, A., and Leshin, L.A., The origin of water on Mars, Icarus, 2003, vol. 165, no. 1, pp. 1–8.

    Article  ADS  Google Scholar 

  • Lunine, J., Graps, A., O’Brien, D.P., Morbidelli, A., Leshin, L., and Coradini, A., Asteroidal sources of Earth’s water based on dynamical simulations, Proc. 38th Lunar and Planetary Sci. Conf., League City, TX, 2007, abs. #1616.

    Google Scholar 

  • Marov, M.Ya. and Grinspoon, D.H. The planet Venus, New Haven: Yale University Press, 1998, 442 p.

    Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I., Volatile inventory and early evolution of planetary atmospheres, in Collisional Processes in the Solar System, Marov, M.Ya. and Rickman, H., Eds., Dordrecht: Kluwer Acad. Publ., 2001, pp. 223–247.

    Chapter  Google Scholar 

  • Marov, M.Ya. and Ipatov, S.I., Migration of dust particles and volatiles delivery to the terrestrial planets, Solar Syst. Res., 2005, vol. 39, no. 5, pp. 374–380.

    Article  ADS  Google Scholar 

  • Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N., and Chernov, A.V., From proto-Sun cloud to the planetary system: gasdust disk evolution model, in “Problemy zarozhdeniya i evolyutsii biosfery” (Problems on Biosphere Origin and Evolution), Galimov, E.M., Ed., Moscow: LIBROKOM, 2008, pp. 223–273, in Russian.

    Google Scholar 

  • Marov, M.Ya., Kosmos. Ot solnechnoi sistemy vglub’ Vselennoi (Space. From the Solar System deep into the Universe), Moscow: Fizmatlit, 2017, 536 p., in Russian.

    Google Scholar 

  • Marty, B., Avice, G., Sano, Y., Altwegg, K., Balsiger, H., Hassig, M., Morbidelli, A., Mousis, O., and Rubin, M., Origins of volatile elements (H, C, N, nobble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission, Earth Planet. Sci. Lett., 2016, vol. 441, pp. 91–103.

    ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., and Cyr, K.E., Source regions and timescales for the delivery of water to the Earth, Meteorit. Planet. Sci., 2000, vol. 35, pp. 1309–1320.

    Article  ADS  Google Scholar 

  • Morbidelli, A., Lunine, J.I., O’Brien, D.P., Raymond, S.N., and Walsh, K.J., Building terrestrial planets, Ann. Rev. Earth Planet. Sci., 2012, vol. 40, no. 1, pp. 251–275.

    Article  ADS  Google Scholar 

  • Muralidharan, K., Deymier, P., Stimpfl, M., de Leeuw, N.H., and Drake, M.J., Origin of water in the inner solar system: A kinetic Monte Carlo study of water adsorption on forsterite, Icarus, 2008, vol. 198, no. 2, pp. 400–407.

    Article  ADS  Google Scholar 

  • Nesvorný, D., Roig, F., and Bottke, W.F., Modeling the historical flux of planetary impactors, Astron. J., 2017, vol. 153, no. 3, art. ID A103, 22 p.

    Article  Google Scholar 

  • O’Brien, D.P., Walsh, K.J., Morbidelli, A., Raymond, S.N., and Mandell, A.M., Water delivery and giant impacts in the ‘Grand Tack’ scenario, Icarus, 2014, vol. 239, pp. 74–84.

    Article  ADS  Google Scholar 

  • Pavlov, A.A., Pavlov, A.K., and Kasting, J.F., Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth’s oceans, J. Geophys. Res., 1999, vol. 104, no. E12, pp. 30725–30728.

    Article  ADS  Google Scholar 

  • Petit, J.-M., Morbidelli, A., and Chambers, J., The primordial excitation and clearing of the asteroid belt, Icarus, 2001, vol. 153, no. 2, pp. 338–347.

    Article  ADS  Google Scholar 

  • Raymond, S.N., Quinn, T., and Lunine, J.I., Making other earths: Dynamical simulations of terrestrial planet formation and water delivery, Icarus, 2004, vol. 168, no. 1, pp. 1–17.

    Article  ADS  Google Scholar 

  • Raymond, S.N. and Izidoro, A., Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion, Icarus, 2017, vol. 297, pp. 134–148.

    Article  ADS  Google Scholar 

  • Rubie, D.C., Jacobson, S.A., Morbidelli, A., O’Brien, D.P., Young, E.D., de Vries, J., Nimmo, F., Palme, H., and Frost, D.J., Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water, Icarus, 2015, vol. 248, pp. 89–108.

    Article  ADS  Google Scholar 

  • Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Ardnt, N.T., Batanova, V.G., Portnyagin, M.V., Schonberg, D.G., and Krasheninnikov, S.P., Komatiites reveal a hydrous Archaean deep mantle reservoir, Nature, 2016, vol. 531, no. 7596, pp. 628–632.

    Article  ADS  Google Scholar 

  • Usui, T., Martian water stored underground, Nature, 2017, vol. 552, pp. 339–340.

    Article  ADS  Google Scholar 

  • Wade, J., Dyck, B., Palin, R.M., Moore, J.D.P., and Smye, A.J., The divergent fates of primitive hydrospheric water on Earth and Mars, Nature, 2017, vol. 552, pp. 391–394.

    Article  ADS  Google Scholar 

  • Yang, L., Ciesla, F.J., and Alexander, C.M.O.’D., The D/H ratio of water in the solar nebula during its formation and evolution, Icarus, 2013, vol. 226, pp. 256–267.

    Article  ADS  Google Scholar 

  • Zheng, X., Lin, D.N.C., and Kouwenhoven, M.B.N., Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula, Astrophys. J., 2017, vol. 835, art. ID A207, 21 p.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Marov.

Additional information

Original Russian Text © M.Ya. Marov, S.I. Ipatov, 2018, published in Astronomicheskii Vestnik, 2018, Vol. 52, No. 5, pp. 402–410.

Reported at the Sixth International Bredikhin Conference (September 4–8, 2017, Zavolzhsk, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marov, M.Y., Ipatov, S.I. Delivery of Water and Volatiles to the Terrestrial Planets and the Moon. Sol Syst Res 52, 392–400 (2018). https://doi.org/10.1134/S0038094618050052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094618050052

Keywords

Navigation